Spelling suggestions: "subject:"aydrogen - atorage"" "subject:"aydrogen - 2storage""
71 |
Hybrid Solid-State Hydrogen Storage MaterialsBenge, Kathryn Ruth January 2008 (has links)
This thesis investigates the chemistry of ammonia borane (NH3BH3) relevant to the development of hydrogen storage systems for vehicular applications. Because of its high hydrogen content and low molecular weight ammonia borane has the potential to meet stringent gravimetric hydrogen storage targets of gt;9 wt%. Two of the three moles of H2 in ammonia borane can be released under relatively mild conditions, with the highest gravimetric yield obtained in the solid-state. However, ammonia borane does not deliver sufficient H2 at practical temperatures and the products formed upon H2 loss are not amenable to regeneration back to the parent compound. The literature synthesis of ammonia borane was modified to facilitate large scale synthesis, and the deuterated analogues ND3BH3 and NH3BD3 were prepared for the purpose of mechanistic studies. The effect of lithium amide on the kinetics of dehydrogenation of ammonia borane was assessed by means of solid-state reaction in a series of specific molar ratios. Upon mixing lithium amide and ammonia borane, an exothermic reaction ensued resulting in the formation of a weakly bound adduct with an H2N...BH3-NH3 environment. Thermal decomposition at or above temperatures of 50eg;C of this phase was shown to liberate gt;9 wt% H2. The mechanism of hydrogen evolution was investigated by means of reacting lithium amide and deuterated ammonia borane isotopologues, followed by analysis of the isotopic composition of evolved gaseous products by mass spectrometry. From these results, an intermolecular multi-step reaction mechanism was proposed, with the rates of the first stage strongly dependent on the concentration of lithium amide present. Compounds exhibiting a BN3 environment (identified by means of solid-state sup1;sup1;B NMR spectroscopy) were formed during the first stage, and subsequently cross link to form a non-volatile solid. Further heating of this non-volatile solid phase ultimately resulted in the formation of crystalline Li3BN2 - identified by means of powder X-ray diffractometry. This compound has been identified as a potential hydrogen storage material due to its lightweight and theoretically high hydrogen content. It may also be amenable to hydrogen re-absorption. The LiNH2/CH3NH2BH3 system was also investigated. Thermal decomposition occurred through the same mechanism described for the LiNH2/NH3BH3 system to theoretically evolve gt;8 wt% hydrogen. The gases evolved on thermal decomposition were predominantly H2 with traces of methane detected by mass spectrometry.
|
72 |
Atomistic Modeling of Hydrogen Storage in Nanostructured CarbonsPeng, Lujian 01 May 2011 (has links)
Nanoporous carbons are among the widely studied and promising materials on hydrogen storage for on-board vehicles. However, the nature of nanoporous carbon structures, as well as the relationship between local structure and hydrogen adsorption are still unclear, and hinder the design of carbon materials for optimum hydrogen storage. This dissertation presents a systematic modeling effort of hydrogen storage in nanoporous carbon materials. Tight binding molecular dynamics simulations are utilized to simulate the amorphous carbons over a wide range of density. The resulting structures are in good agreement with experimental data of ultra-microporous carbon (UMC), a wood-based activated carbon, as indicated by a comparison of the microstructure at atomic level, pair distribution function, and pore size distribution. To estimate gas adsorption in complex geometries, an efficient numerical algorithm (based on a continuum gas adsorption model) is developed for calculating the gas uptake at room temperature and moderate pressures. This algorithm is a classical approximation of the quantum mechanical model by Patchkovskii et al.1 and proven to be much faster than other commonly used methods. The gas adsorption calculations in carbon structures from tight-binding simulations demonstrate both a promising hydrogen storage capacity (1.33 wt% at 298K and 5 MPa) and a reasonable heat of adsorption (12-21 kJ/mol). To our knowledge, this is the first work to directly calculate hydrogen adsorption capacity in amorphous carbon. This work demonstrates that increasing the heat of adsorption does not necessarily increase the hydrogen uptake. In fact, the available adsorption volume is as important as the isosteric heat of adsorption for hydrogen storage in nanoporous carbons.
|
73 |
Hydrogen Storage Materials : Design, Catalysis, Thermodynamics, Structure and OpticsGraça Araújo, Carlos Moysés January 2008 (has links)
Hydrogen is abundant, uniformly distributed throughout the Earth's surface and its oxidation product (water) is environmentally benign. Owing to these features, it is considered as an ideal synthetic fuel for a new world energetic matrix (renewable, secure and environmentally friendly) that could allow a sustainable future development. However, for this prospect to become a reality, efficient ways to produce, transport and store hydrogen still need to be developed. In the present thesis, theoretical studies of a number of potential hydrogen storage materials have been performed using density functional theory. In NaAlH4 doped with 3d transition metals (TM), the hypothesis of the formation of Ti-Al intermetallic alloy as the main catalytic mechanism for the hydrogen sorption reaction is supported. The gateway hypothesis for the catalysis mechanism in TM-doped MgH2 is confirmed through the investigation of MgH2 nano-clusters. Thermodynamics of Li-Mg-N-H systems are analyzed with good agreement between theory and experiments. Besides chemical hydrides, the metal-organic frameworks (MOFs) have also been investigated. Li-decorated MOF-5 is demonstrated to possess enhanced hydrogen gas uptake properties with a theoretically predicted storage capacity of 2 wt% at 300 K and low pressure. The metal-hydrogen systems undergo many structural and electronic phase transitions induced by changes in pressure and/or temperature and/or H-concentration. It is important both from a fundamental and applied viewpoint to understand the underlying physics of these phenomena. Here, the pressure-induced structural phase transformations of NaBH4 and ErH3 were investigated. In the latter, an electronic transition is shown to accompany the structural modification. The electronic and optical properties of the low and high-pressure phases of crystalline MgH2 were calculated. The temperature-induced order-disorder transition in Li2NH is demonstrated to be triggered by Li sub-lattice melting. This result may contribute to a better understanding of the important solid-solid hydrogen storage reactions that involve this compound.
|
74 |
Production And Characterization Of Cani Compounds For Metal Hydride BatteriesOksuz, Berke 01 September 2012 (has links) (PDF)
Ni - MH batteries have superior properties which are long cycle life, low maintenance, high power, light weight, good thermal performance and configurable design. Hydrogen storage alloys play a dominant role in power service life of a Ni - MH battery and determining the electrochemical properties of the battery. LaNi5, belonging to the CaCu5 crystal structure type, satisfy many of the properties. The most important property of LaNi5 is fast hydrogen kinetics. Recently, CaNi5, belonging to same crystal type, has taken some attention due to its low cost, higher hydrogen storage capacity, good kinetic properties. However, the main restriction of its use is its very low cycle life.
The aim of the study is to obtain a more stable structure providing higher cycle life by the addition of different alloying elements. In this study, the effect of sixteen alloying elements (Mn, Sm, Sn, Al, Y, Cu, Si, Zn, Cr, Mg, Fe, Dy, V, Ti, Hf and Er) on cycle life was investigated. Sm, Y, Dy, Ti, Hf and Er were added for replacement of Ca and Mn, Sn, Al, Cu, Si, Zn, Cr, Mg, Fe and V were added for replacement of Ni. Alloys were produced by vacuum casting and heat treating followed by ball milling. The cells assembled, using the produced active materials as anode, which were cycled for charging and discharging. As a result, replacement of Ca with Hf, Ti, Dy and Er, and replacement of Ni with Si and Mn were observed to show better cycle durability rather than pure CaNi5.
|
75 |
Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for BatteriesLarsson, Peter January 2009 (has links)
Density functional theory has been used to investigate cathode materials for rechargeable batteries, carbon nanotube interactions with catalyst particles and transition metal catalyzed hydrogen release in magnesium hydride nanoclusters. An effort has been made to the understand structural and electrochemical properties of lithium iron silicate (Li2FeSiO4) and its manganese-doped analogue. Starting from the X-ray measurements, the crystal structure of Li2FeSiO4 was refined, and several metastable phases of partially delithiated Li2FeSiO4 were identified. There are signs that manganese doping leads to structural instability and that lithium extraction beyond 50% capacity only occurs at impractically high potentials in the new material. The chemical interaction energies of single-walled carbon nanotubes and nanoclusters were calculated. It is found that the interaction needs to be strong enough to compete with the energy gained by detaching the nanotubes and forming closed ends with carbon caps. This represents a new criterion for determining catalyst metal suitability. The stability of isolated carbon nanotube fragments were also studied, and it is argued that chirality selection during growth is best achieved by exploiting the much wider energy span of open-ended carbon nanotube fragments. Magnesium hydride nanoclusters were doped with transition metals Ti, V, Fe, and Ni. The resulting changes in hydrogen desorption energies from the surface were calculated, and the associated changes in the cluster structures reveal that the transition metals not only lower the desorption energy of hydrogen, but also seem to work as proposed in the gateway hypothesis of transition metal catalysis.
|
76 |
Functional Materials for Rechargeable Li Battery and Hydrogen StorageHe, Guang January 2012 (has links)
The exploration of functional materials to store renewable, clean, and efficient energies for electric vehicles (EVs) has become one of the most popular topics in both material chemistry and electrochemistry. Rechargeable lithium batteries and fuel cells are considered as the most promising candidates, but they are both facing some challenges before the practical applications. For example, the low discharge capacity and energy density of the current lithium ion battery cannot provide EVs expected drive range to compete with internal combustion engined vehicles. As for fuel cells, the rapid and safe storage of H2 gas is one of the main obstacles hindering its application. In this thesis, novel mesoporous/nano functional materials that served as cathodes for lithium sulfur battery and lithium ion battery were studied. Ternary lithium transition metal nitrides were also synthesized and examined as potential on-board hydrogen storage materials for EVs.
Highly ordered mesoporous carbon (BMC-1) was prepared via the evaporation-induced self-assembly strategy, using soluble phenolic resin and Tetraethoxysilane (TEOS) as precursors and triblock copolymer (ethylene oxide)106(propylene oxide)70(ethylene oxide)106 (F127) as the template. This carbon features a unique bimodal structure (2.0 nm and 5.6 nm), coupled with high specific area (2300 m2/g) and large pore volume (2.0 cm3/g). The BMC-1/S nanocomposites derived from this carbon with different sulfur content exhibit high reversible discharge capacities. For example, the initial capacity of the cathode with 50 wt% of sulfur was 995 mAh/g and remains at 550 mAh/g after 100 cycles at a high current density of 1670 mA/g (1C). The good performance of the BMC-1C/S cathodes is attributed to the bimodal structure of the carbon, and the large number of small mesopores that interconnect the isolated cylindrical pores (large pores). This unique structure facilitates the transfer of polysulfide anions and lithium ions through the large pores. Therefore, high capacity was obtained even at very high current rates. Small mesopores created during the preparation served as containers and confined polysulfide species at the cathode. The cycling stability was further improved by incorporating a small amount of porous silica additive in the cathodes.
The main disadvantage of the BMC-1 framework is that it is difficult to incorporate more than 60 wt% sulfur in the BMC-1/S cathodes due to the micron-sized particles of the carbon. Two approaches were employed to solve this problem. First, the pore volume of the BMC-1 was enlarged by using pore expanders. Second, the particle size of BMC-1 was reduced by using a hard template of silica. Both of these two methods had significant influence on improving the performance of the carbon/sulfur cathodes, especially the latter. The obtained spherical BMC-1 nanoparticles (S-BMC) with uniform particle size of 300 nm exhibited one of the highest inner pore volumes for mesoporous carbon nanoparticles of 2.32 cm3/g and also one of the highest surface areas of 2445 m2/g with a bimodal pore size distribution of large and small mesopores of 6 nm and 3.1 nm. As much as 70 wt% sulfur was incorporated into the S-BMC/S nanocomposites. The corresponding electrodes showed a high initial discharge capacity up to 1200 mAh/g and 730 mAh/g after 100 cycles at a high current rate 1C (1675 mA/g). The stability of the cells could be further improved by either removal of the sulfur on the external surface of spherical particles or functionalization of the C/S composites via a simple TEOS induced SiOx coating process. In addition, the F-BMC/S cathodes prepared with mesoporous carbon nanofibers displayed similar performance as the S-BMC/S. These results indicate the importance of particle size control of mesoporous carbons on electrochemical properties of the Li-S cells.
By employing the order mesoporous C/SiO2 framework, Li2CoSiO4/C nanocomposites were synthesized via a facile hydrothermal method. The morphology and particle size of the composites could be tailored by simply adjusting the concentrations of the base LiOH. By increasing the ratio of LiOH:SiO2:CoCl2 in the precursors, the particle size decreased at first and then went up. When the molar ratio is equal to 8:1:1, uniform spheres with a mean diameter of 300-400 nm were obtained, among which hollow and core shell structures were observed. The primary reaction mechanism was discussed, where the higher concentration of OH- favored the formation of Li2SiO3 but hindered the subsequent conversion to Li2CoSiO4. According to the elemental maps and TGA of the Li2CoSiO4/C, approximately 2 wt% of nanoscale carbon was distributed on/in the Li2CoSiO4, due to the collapse of the highly ordered porous structure of MCS. These carbons played a significant role in improving the electrochemical performance of the electrode. Without any ball-mill or carbon wiring treatments, the Li2CoSiO4/C-8 exhibited an initial discharge capacity of 162 mAh/g, much higher than that of the sample synthesized with fume silica under similar conditions and a subsequent hand-mixing of Ketjen black.
Finally, lithium transition metal nitrides Li7VN4 and Li7MnN4 were prepared by high temperature solid-state reactions. These two compounds were attempted as candidates for hydrogen storage both by density functional theory (DFT) calculations and experiments. The results show that Li7VN4 did not absorb hydrogen under our experimental conditions, and Li7MnN4 was observed to absorb 7 hydrogen atoms through the formation of LiH, Mn4N, and ammonia gas. While these results for Li7VN4 and Li7MnN4 differ in detail, they are in overall qualitative agreement with our theoretical work, which strongly suggests that both compounds are unlikely to form quaternary hydrides.
|
77 |
Dehydriding process of alpha-AlH3 observed by transmission electron microscopy and electron energy-loss spectroscopyMuto, S, Tatsumi, K, Ikeda, K, Orimo, S 19 June 2009 (has links)
No description available.
|
78 |
Controlled mechano-chemical synthesis and properties of nanostructured hydrides in the Mg-Al-H and Mg-B-H systemsChiu, Chun 28 March 2007 (has links)
The present work reports a study of mechano-chemical synthesis (MCS) and mechano-chemical activation synthesis (MCAS) of nanostructured hydrides in the Mg-H, Mg-Al-H and Mg-B-H systems by controlled reactive mechanical alloying/milling (CRMA/CRMM) in the magneto-mill Uni-Ball-Mill 5.
Regardless of the hydride systems, the morphologies of milled Mg-H, Mg-Al-H and Mg-B-H powders after a prolonged milling time can be characterized by dramatic particle size refinement and high tendency to form agglomerates.
In the Mg-Al-H system, no successful synthesis of magnesium alanate has been achieved by MCS of the nanostructured magnesium alanate using four starting stoichiometric Mg-2Al mixtures. It is hypothesized that Al(Mg) solid solution in the initial stage (~10h) of CRMA and free Al(s) decomposed from solid solution as the milling time increases the initial stage inhibit the reaction to form magnesium alanate.
In contrast to an unsuccessful synthesis in MCS process, a successful synthesis of the magnesium alanate and 2NaCl mixture by MCAS has been achieved. DSC and TGA analysis show that the decomposition of magnesium alanate occurs in a two-step reaction at the temperature ranges of 125-180 and 225-340°C.
In the Mg-B-H system, when the Mg-2B mixture is made with the oxidized amorphous boron containing B2O3 then after a prolonged MCS time (200h), only nanometric γ- and β- magnesium hydrides are formed. In contrast, oxide-free amorphous boron in the original Mg-2B mixture prompts the formation of a resulting mixture of nanometric MgB2 and an amorphous phase containing hydrogen. Further annealing of the milled Mg-2B mixtures at ~100-400ºC under ~4-4.3 MPa of hydrogen for 20-100h does not result in the formation of ternary magnesium alanate.
Alternatively, a powder mixture of 2NaBH4 and MgCl2 is used as a starting material to synthesize Mg(BH4)2 hydride. Amorphous Mg(BH4)2 phase might have been synthesized after MCAS process. However, the formation of Na(Mg)BH4 solid solution might prevent the synthesis of a large amount of Mg(BH4)2 hydride. Once the solid solution is formed, the amount of Mg will be insufficient to form a large amount of Mg(BH4)2 hydride.
|
79 |
Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion batteryQian, Zhao January 2013 (has links)
In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to produce and store hydrogen have been hindering the realization of the hydrogen economy. Here from the scientific perspective, various materials including the nanostructures and the bulk hydrides have been examined in terms of their crystal and electronic structures, energetics, and different properties for hydrogen generation or hydrogen storage applications. In the study of chemisorbed graphene-based nanostructures, the N, O-N and N-N decorated ones are designed to work as promising electron mediators in Z-scheme photocatalytic hydrogen production. Graphene nanofibres (especially the helical type) are found to be good catalysts for hydrogen desorption from NaAlH4. The milestone nanomaterial, C60, is found to be able to significantly improve the hydrogen release from the (LiH+NH3) mixture. In addition, the energetics analysis of hydrazine borane and its derivative solid have revealed the underlying reasons for their excellent hydrogen storage properties. As the other technical trend of replacing fossil fuels in electrical vehicles, the Li-ion battery technology for energy storage depends greatly on the development of electrode materials. In this thesis, the pure NiTiH and its various metal-doped hydrides have been studied as Li-ion battery anode materials. The Li-doped NiTiH is found to be the best candidate and the Fe, Mn, or Cr-doped material follows. / <p>QC 20130925</p>
|
80 |
Controlled mechano-chemical synthesis and properties of nanostructured hydrides in the Mg-Al-H and Mg-B-H systemsChiu, Chun 28 March 2007 (has links)
The present work reports a study of mechano-chemical synthesis (MCS) and mechano-chemical activation synthesis (MCAS) of nanostructured hydrides in the Mg-H, Mg-Al-H and Mg-B-H systems by controlled reactive mechanical alloying/milling (CRMA/CRMM) in the magneto-mill Uni-Ball-Mill 5.
Regardless of the hydride systems, the morphologies of milled Mg-H, Mg-Al-H and Mg-B-H powders after a prolonged milling time can be characterized by dramatic particle size refinement and high tendency to form agglomerates.
In the Mg-Al-H system, no successful synthesis of magnesium alanate has been achieved by MCS of the nanostructured magnesium alanate using four starting stoichiometric Mg-2Al mixtures. It is hypothesized that Al(Mg) solid solution in the initial stage (~10h) of CRMA and free Al(s) decomposed from solid solution as the milling time increases the initial stage inhibit the reaction to form magnesium alanate.
In contrast to an unsuccessful synthesis in MCS process, a successful synthesis of the magnesium alanate and 2NaCl mixture by MCAS has been achieved. DSC and TGA analysis show that the decomposition of magnesium alanate occurs in a two-step reaction at the temperature ranges of 125-180 and 225-340°C.
In the Mg-B-H system, when the Mg-2B mixture is made with the oxidized amorphous boron containing B2O3 then after a prolonged MCS time (200h), only nanometric γ- and β- magnesium hydrides are formed. In contrast, oxide-free amorphous boron in the original Mg-2B mixture prompts the formation of a resulting mixture of nanometric MgB2 and an amorphous phase containing hydrogen. Further annealing of the milled Mg-2B mixtures at ~100-400ºC under ~4-4.3 MPa of hydrogen for 20-100h does not result in the formation of ternary magnesium alanate.
Alternatively, a powder mixture of 2NaBH4 and MgCl2 is used as a starting material to synthesize Mg(BH4)2 hydride. Amorphous Mg(BH4)2 phase might have been synthesized after MCAS process. However, the formation of Na(Mg)BH4 solid solution might prevent the synthesis of a large amount of Mg(BH4)2 hydride. Once the solid solution is formed, the amount of Mg will be insufficient to form a large amount of Mg(BH4)2 hydride.
|
Page generated in 0.0633 seconds