Spelling suggestions: "subject:"aydrogen atorage,"" "subject:"aydrogen 2storage,""
91 |
Hydrogen Storage in Hypercrosslinked Polystyrene and Li-Mg-N-H Complex HydrideDemirocak, Dervis Emre 01 January 2013 (has links)
In this dissertation, hydrogen storage enhancement in hypercrosslinked polystyrene, effects of single walled carbon nanotubes (SWCNTs) supported ruthenium (Ru) catalyst on the kinetics and ammonia suppression in the LiNH2-MgH2 complex hydride system and the accuracy of hydrogen storage measurements are investigated in detail.
High surface area physisorption materials are of interest for room temperature hydrogen storage enhancement by spillover. Six different commercially available hypercrosslinked polystyrenes are screened by considering the specific surface area, average pore size, pore volume, and adsorption enthalpy. MN270 is selected mainly due to its high surface area and narrow pores for investigation of the spillover enhancement at room temperature. Two different platinum (Pt) doped MN270 samples are prepared by wet impregnation (MN270-6wt%Pt) and bridge building technique (MN270-bridged) with an average Pt particle size of 3.9 and 9.9nm, respectively, as obtained from X-ray diffraction analysis. Pt doping altered the surface property of MN270, and reduced the nitrogen and hydrogen uptake at 77 K and 1 atm due to pore blocking. The room temperature hydrogen uptake at 100 atm demonstrated a 10% enhancement for the MN270-bridged (0.36 wt. %) compared to the pristine MN270 (0.32 wt. %), but did not show any enhancement for the MN270-6wt%Pt under the same conditions. The hydrogen uptake of MN270-bridged has little value for practical applications; however, it showed the effectiveness of the bridge building technique.
The LiNH2 - MgH2 (2:1.1) complex metal hydride system (Li-Mg-N-H), which is prepared by high energy ball milling, is investigated in terms of the hydrogen ab/desorption kinetics and the concomitant NH3 emission levels. By selecting more intense ball milling parameters, the hydrogen ab/desorption kinetics were improved and the NH3 emission reduced. However, it is shown that NH3 emission cannot be completely eliminated by ball milling. The hydrogen desorption kinetics of the Li-Mg-N-H system is much faster than the absorption kinetics at a specific T and P, but the desorption kinetics degraded considerably over a number of cycles as opposed to the stabilized absorption kinetics. Furthermore, SWCNTs and 20 wt. % Ru doped SWCNTs (SWCNT-20Ru) are utilized as catalysts to study their effects on NH3 emission and kinetics characteristics of the Li-Mg-N-H system. The SWCNT doped sample did not show any kinetics improvement, whereas the SWCNT-20Ru doped sample showed similar kinetics performance as that of the base sample. More importantly, the presence of SWCNT increased the NH3 emission as compared to the base sample. On the other hand, SWCNT-20Ru doping reduced the NH3 emission compared to the SWCNT doping, but did not eliminate it completely. As revealed from the mass spectrometry signals, the SWCNT-20Ru catalyst starts to decompose NH3 at a temperature as low as 200°C. However, an optimal catalyst still needs to be developed by fine tuning the Ru particle size and the SWCNT structural properties to maximize its effectiveness to suppress NH3 release in the Li-Mg-N-H system.
The design of a volumetric measurement apparatus is studied by means of an uncertainty analysis to provide guidelines for optimum hydrogen sorption measurements. The reservoir volume should be as small as possible (i.e., 10 cc) to minimize the uncertainty. In addition, the sample mass loading has a profound effect on the uncertainty and the optimum loading is a function of the sample's intrinsic storage capacity. In general, the higher the sample mass loading the lower is the uncertainty, regardless of any other parameters. In cases where the material to be tested is not available in gram quantities, the use of high accuracy pressure and temperature transducers significantly mitigates the uncertainty in the sample's hydrogen uptake. Above all, the thermal equilibration time is an important parameter for high accuracy measurements and needs to be taken into consideration at the start of the measurements. Based on computational analysis, a 5 min wait time is required for achieving thermal equilibrium when the instrument enclosure temperature is different than the ambient temperature.
|
92 |
Theoretical Investigations of Gas Sorption and Separation in Metal-Organic MaterialsPham, Tony 01 January 2015 (has links)
Metal--organic frameworks (MOFs) are porous crystalline materials that are synthesized from rigid organic ligands and metal-containing clusters. They are highly tunable as a number of different structures can be made by simply changing the organic ligand and/or metal ion. MOFs are a promising class of materials for many energy-related applications, including H2 storage and CO2 capture and sequestration. Computational studies can provide insights into MOFs and the mechanism of gas sorption and separation. Theoretical studies on existing MOFs are performed to determine what structural characteristics leads to favorable gas sorption mechanisms. The results from these studies can provide insights into designing new MOFs that are tailored for specific applications. In this work, grand canonical Monte Carlo (GCMC) simulations were performed in various MOFs to understand the gas sorption mechanisms and identify the favorable sorption sites in the respective materials. Experimental observables such as sorption isotherms and associated isosteric heat of adsorption, Qst, values can be generated using this method. Outstanding agreement with experimental measurements engenders confidence in a variety of molecular level predictions. Explicit many-body polarization effects were shown to be important for the modeling of gas sorption in highly charged/polar MOFs that contain open-metal sites. Indeed, this was demonstrated through a series of simulation studies in various MOFs with rht topology that contain such sites. Specifically, the inclusion of many-body polarization interactions was essential to reproduce the experimentally observed sorption isotherms and Qst values and capture the binding of sorbate molecules onto the open-metal sites in these MOFs. This work also presents computational studies on a family of pillared square grid that are water-stable and display high CO2 sorption and selectivity. These MOFs are deemed promising for industrial applications and CO2 separations. Simulations in these materials revealed favorable interactions between the CO2 molecules and the SiF62- pillars. Further, the compound with the smallest pore size exhibits the highest selectivity for CO2 as demonstrated through both experimental and theoretical studies. Many other MOFs with intriguing sorption properties are investigated in this work and their sorption mechanisms have been discerned through molecular simulation.
|
93 |
Design of an underground compressed hydrogen gas storagePowell, Tobin Micah 14 February 2011 (has links)
Hydrogen has received significant attention throughout the past decade as the United States focuses on diversifying its energy portfolio to include sources of energy beyond fossil fuels. In a hydrogen economy, the most common use for hydrogen is in fuel cell vehicles. Advancements in on-board storage devices, investment in hydrogen production facilities nation-wide, development of a hydrogen transmission infrastructure, and construction of hydrogen fueling stations are essential to a hydrogen economy. This research proposes a novel underground storage technique to be implemented at a hydrogen fueling station. Three boreholes are drilled into the subsurface, with each borehole consisting of an outer pipe and an inner pipe. Hydrogen gas (H2) is stored in the inner tube, while the outer pipe serves to protect the inner pipe and contain any leaked gas. Three boreholes of varying pressures are necessary to maintain adequate inventory and sufficient pressure while filling vehicles to full tank capacity. The estimated cost for this storage system is $2.58 million. This dollar amount includes drilling and completion costs, steel pipe costs, the cost of a heavy-duty hydrogen compressor, and miscellaneous equipment expenses. Although the proposed design makes use of decades’ worth of experience and technical expertise from the oil and gas industry, there are several challenges—technical, economic, and social—to implementing this storage system. The impact of hydrogen embrittlement and the lack of a hydrogen transmission infrastructure represent the main technical impediments. Borehole H2 storage, as part of a larger hydrogen economy, reveals significant expenses beyond those calculated in the amount above. Costs related to delivering H2 to the filling station, electricity, miscellaneous equipment, and maintenance associated with hydrogen systems must also be considered. Public demand for hydrogen is low for several reasons, and significant misperceptions exist concerning the safety of hydrogen storage. Although the overall life-cycle emissions assessment of hydrogen fuel reveals mediocre results, a hydrogen economy impacts air quality less than current fossil-fuel systems. If and when the U.S. transitions to a hydrogen economy, the borehole storage system described herein is a feasible solution for on-site compressed H2 storage. / text
|
94 |
IN SITU NMR STUDIES OF HYDROGEN STORAGE KINETICS AND MOLECULAR DIFFUSION IN CLATHRATE HYDRATE AT ELEVATED HYDROGEN PRESSURESOkuchi, Takuo, Moudrakovski, Igor L., Ripmeester, John A. 07 1900 (has links)
Clathrate hydrates can be reasonable choices for high-density hydrogen storage into compact host media, which is an essential task for hydrogen-based future society. However, conventional storage scheme where aqueous solution is frozen with hydrogen gas was impractically slow for practical use. Here we propose a much faster scheme where hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders. The storage kinetics was observed in situ by nuclear magnetic resonance (NMR) spectroscopy in a pressurized tube cell. At pressures up to 20 MPa the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Since the rate-determining step of current storage scheme is body diffusion of hydrogen within the crystalline hydrate media, we have measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that at temperatures down to 250 K the stored hydrogen is highly mobile, so that the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, the clathrate hydrate could offer even more advantages: It is free from hydrogen embrittlement, more chemically durable, more environmentally benign, as well as economically quite affordable.
|
95 |
MIGRATION OF HYDROGEN GUEST MOLECULES THROUGH CLATHRATE CAGES.Alavi, Saman, Ripmeester, John A. 07 1900 (has links)
Electronic structure calculations are performed to determine the barriers to migration of
molecular hydrogen in clathrate cages. The barriers are used in a chemical reaction rate
expression to determine the rate of H2 migration and the diffusion coefficient for the hydrogen
guest molecules. Calculations are performed for migration of hydrogen guests through pentagonal
and hexagonal clathrate cage faces. Cage faces where the water molecules obey the water rules
and cage faces with Bjerrum L and D defects are considered. The migration barriers were
calculated to be ≈25 kcal/mol from the pentagonal faces and between 5 to 6 kcal/mol for the
hexagonal faces, depending on the orientation of the hydrogen molecule.
|
96 |
CLATHRATES OF HYDROGEN WITH APPLICATION TOWARDS HYDROGEN STORAGEStrobel, Timothy A., Kim, Yongkwan, Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
In the current work we present a significant advancement in the area of hydrogen storage in clathrates: hydrogen storage from both enclathrated molecular hydrogen as well as storage from the clathrate host lattice. We have investigated the hydrogen storage potential in all of the common clathrate hydrate structures with techniques such as gas evolution, X-ray / neutron diffraction, and NMR / Raman spectroscopy. We have determined that the common clathrate structures may not suffice as H2 storage materials, although these findings will aid in the design and production of enhanced hydrogen storage materials and in the understanding of structure-stability relations of guest-host systems. In view of current storage limitations, we propose a novel chemical – clathrate hybrid hydrogen storage concept that holds great promise for future materials.
|
97 |
Magnio hidrido plonų dangų, skirtų vandenilio saugojimui gavimas, panaudojant garinimą reaktyvioje aplinkoje / Development of magnesium hydride thin films used for hydrogen storage employing magnetron sputtering in reactive atmosphereBartninkas, Aurimas 02 February 2012 (has links)
Vienas iš didžiausių iššūkių su kuriais susiduria kompanijos norėdamos panaudoti vandenilio energetikos technologijas įvairiuose prietaisuose – vandenilio saugojimas. Dabartiniu metu egzistuoja trys technologijos, kurios naudojamos vandenilio saugojimui: suspaustas, kriogeninis vandenilis ir vandenilio saugojimas kompleksiniuose junginiuose. Suspaustas ir atšaldytas vandenilis jau pasiekė savo technologinius limitus. Daugiausiai vilčių dedama į vandenilio saugojimą kompleksinėse anglies nanostruktūrose ir metalų hidriduose. Šis darbas yra susijęs su bandymu sintetinti magnio hidridą, panaudojant magnetroninio garinimo sistemą, garinant magnį vandenilio ir argono reaktyvioje aplinkoje. Magnio hidridas yra vienas iš labiausiai tiriamų metalų hidridų vandenilio saugojimui. Deja, dabartiniu metu nėra sukurta technologiškai paprastų patikimų (greita vandenilio absorbcija ir desorbcija, minimalūs nuostoliai ir t.t) ir ekonomiškai efektyvių magnio hidrido sintezės metodų. Darbe gautos struktūros ištirtos panaudojant paviršiaus profilometrijos, SEM, EDS ir XRD metodus. Gauti rezultatai parodė, kad gautos struktūros yra tik dalinai magnio hidridas. / Hydrogen storage is one of the main challenges related with the use of hydrogen energy technologies in daily activities. Three main technologies for hydrogen storage available today: compressed, krio hydrogen and hydrogen storage in different compounds. Compressed and crio hydrogen almost reached its technological limits. A lot of expectations were related with hydrogen storage in carbon nanostructures and metal hydrides. This work is mainly related with magnesium hydride synthesis using magnetron sputtering in reactive hydrogen and argon atmosphere. Magnesium hydride is one of the most promising material. Unfortunately, there is no technologically simple and reliable methods (fast adsorbion/desorption kinetics, minimal losses and etc.) for magnesium hidride synthesis. The magnesium based structures which were received during the work were analyzed using SEM and EDS, surface profilometry and XRD methods. It is shown that received structure only partially transformed to magnesium hydride.
|
98 |
Microstructure-property correlation in magnesium-based hydrogen storage systems- The case for ball-milled magnesium hydride powder and Mg-based multilayered compositesDanaie, Mohsen Unknown Date
No description available.
|
99 |
Using nano-materials to catalyze magnesium hydride for hydrogen storageShalchi Amirkhiz, Babak Unknown Date
No description available.
|
100 |
Synthesis and Characterization of Rationally Designed Porous Materials for Energy Storage and Carbon CaptureSculley, Julian Patrick 03 October 2013 (has links)
Two of the hottest areas in porous materials research in the last decade have been in energy storage, mainly hydrogen and methane, and in carbon capture and sequestration (CCS). Although these topics are intricately linked in terms of our future energy landscape, the specific materials needed to solve these problems must have significantly different properties. High pressure gas storage is most often linked with high surface areas and pore volumes, while carbon capture sorbents require high sorption enthalpies to achieve the needed selectivity. The latter typically involves separating CO2 from mixed gas streams of mostly nitrogen via a temperature swing adsorption (TSA) process. Much of the excitement has arisen because of the potential of metal-organic frameworks (MOFs) and porous polymer networks (PPNs). Both classes of materials have extremely high surface areas (upwards of 4000 m2/g) and can be modified to have specific physical properties, thus enabling high performance materials for targeted applications. This dissertation focuses on the synthesis and characterization of these novel materials for both applications by tuning framework topologies, composition, and surface properties.
Specifically, two routes to synthesize a single molecule trap (SMT) highlight the flexibility of MOF design and ability to tune a framework to interact with specifically one guest molecule; computational and experimental evidence of the binding mechanism are shown as well. Furthermore, eight PPNs are synthesized and characterized for post-combustion carbon capture and direct air capture applications. In addition a high-throughput model, grounded in thermodynamics, to calculate the energy penalty associated with the carbon capture step is presented in order to evaluate all materials for TSA applications provide a comparison to the state of the art capture technologies. This includes results of working capacity and energy calculations to determine parasitic loads (per ton of CO2 captured) from readily available experimental data of any material (adsorption isotherms and heat capacities) using a few simple equations. Through various systematic investigations, trends are analyzed to form structure property relationships that will aid future material development.
|
Page generated in 0.0702 seconds