• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ligand Design for Novel Metal-Organic Polyhedra and Metal-Organic Frameworks for Alternative Energy Applications

Kuppler, Ryan John 2010 August 1900 (has links)
The primary goal of this research concerns the synthesis of organic ligands in an effort to create metal-organic porous materials for the storage of gas molecules for alternative energy applications as well as other applications such as catalysis, molecular sensing, selective gas adsorption and separation. Initially, the focus of this work was on the synthesis of metal-organic polyhedra, yet the research has to date not progressed past the synthesis of ligands and the theoretical polyhedron that may form. Further efforts to obtain polyhedra from these ligands need to be explored. Concurrently, the search for a metal-organic framework that hopefully breaks the record for methane adsorption at low pressure and standard temperature was undertaken. A framework, PCN-80, was synthesized based off a newly synthesized extended bianthracene derivative, yet was unstable to the atmosphere. Hydrogen and methane adsorption capacities have been evaluated by molecular simulations; these adsorption isotherms indicated a gravimetric hydrogen uptake of 9.59 weight percent and a volumetric uptake of methane of 78.47 g/L. Following the synthesis of PCN-80, a comparison study involving the effect of the stepwise growth of the number of aromatic rings in the ligand of a MOF was pursued; the number of aromatic rings in the ligand was varied from one to eight while still maintaining a linear, ditopic moiety. The synthesis of another bianthracene-based ligand was used to complete the series of ligands and PCN-81, a two-dimensional framework with no noticeable porosity as evident by the simulated hydrogen uptake of 0.68 weight percent, was synthesized. All of these MOFs were synthesized from zinc salts to reduce the number of variables. No clear relationship was established in terms of the number of aromatic rings present in the ligand and the hydrogen adsorption capacity. However, it was confirmed that the density and hydrogen uptake in weight percent are inversely proportional. Further work needs to be done to determine what advantages are offered by these novel frameworks containing extended bianthracene derivatives. For example, with the highly fluorescent nature of the ligands from which they are composed, both PCN-80 and PCN-81 should be studied for the potential use in the application of fluorescent materials.
2

Synthesis and Characterization of Rationally Designed Porous Materials for Energy Storage and Carbon Capture

Sculley, Julian Patrick 03 October 2013 (has links)
Two of the hottest areas in porous materials research in the last decade have been in energy storage, mainly hydrogen and methane, and in carbon capture and sequestration (CCS). Although these topics are intricately linked in terms of our future energy landscape, the specific materials needed to solve these problems must have significantly different properties. High pressure gas storage is most often linked with high surface areas and pore volumes, while carbon capture sorbents require high sorption enthalpies to achieve the needed selectivity. The latter typically involves separating CO2 from mixed gas streams of mostly nitrogen via a temperature swing adsorption (TSA) process. Much of the excitement has arisen because of the potential of metal-organic frameworks (MOFs) and porous polymer networks (PPNs). Both classes of materials have extremely high surface areas (upwards of 4000 m2/g) and can be modified to have specific physical properties, thus enabling high performance materials for targeted applications. This dissertation focuses on the synthesis and characterization of these novel materials for both applications by tuning framework topologies, composition, and surface properties. Specifically, two routes to synthesize a single molecule trap (SMT) highlight the flexibility of MOF design and ability to tune a framework to interact with specifically one guest molecule; computational and experimental evidence of the binding mechanism are shown as well. Furthermore, eight PPNs are synthesized and characterized for post-combustion carbon capture and direct air capture applications. In addition a high-throughput model, grounded in thermodynamics, to calculate the energy penalty associated with the carbon capture step is presented in order to evaluate all materials for TSA applications provide a comparison to the state of the art capture technologies. This includes results of working capacity and energy calculations to determine parasitic loads (per ton of CO2 captured) from readily available experimental data of any material (adsorption isotherms and heat capacities) using a few simple equations. Through various systematic investigations, trends are analyzed to form structure property relationships that will aid future material development.
3

Methane Storage In Activated Carbon Nanostructures : A Combined Density Functional And Monte Carlo Study

Dutta, Debosruti 07 1900 (has links) (PDF)
Natural gas is stored as compressed natural gas (CNG) in heavy steel cylinders under pressures of 200-250 atm. However, such a method of storage has certain disadvantages which include multistage compression costs, limited driving range and safety aspects. Hence, alternative methods of storage such as adsorbed natural gas (ANG) which involve adsorbing natural gas at moderate pressures and room temperatures in a suitable nanoporous material are currently being explored. In this thesis, we have isolated model carbon nanostructures and defect geometries most likely to be found in these materials and investigated their specific interactions with methane. The thesis is concerned with ab-initio density functional theory calculations on these various model carbon nanostructures in order to identify the potential candidates that enhance methane adsorption. The adsorption energies of methane on graphite and graphene sheets were similar, with a value of 12.3 kJ/mol for graphene. The Stone-Wales defect in graphene was found to increase the methane adsorption energy to 37.2 kJ/mol, and small surface undulations on the graphene sheet resulted in a smaller increase (16 kJ/mol) in the adsorption energy relative to graphene. The presence of an interstitial carbon was found to significantly reduce the adsorption energy to 5.2 kJ/mol. The enhanced adsorption energy in the case of the Stone-Wales defect was attributed to the significant charge redistribution in the vicinity of the defect. A variety of functional groups such as carboxylic acid (COOH), carbonyl (CO), phenol (OH), pyran (-O-), phenone (=O), peroxide (OOH) and amine (NH2) groups have been observed on carbon surfaces. Extensive density functional calculations of methane adsorbed on various chemically functionalized graphene nanoribbons were carried out to evaluate their methane adsorption energies. A significant finding in this study, is the increased adsorption energies (relative to graphene) that occur for the functional groups containing the OH moiety. The adsorption energies for edge functionalized graphene nanoribbons are 27.6 and 69.7 kJ/mol for COOH and OOH functionalization. Additional computations reveal a strong correlation between the induced dipole moment on methane and the strength of the adsorption energies obtained for the extended nanoribbons. Adsorption isotherms for methane were obtained using grand canonical Monte Carlo simulations for slit-like graphitic pores with and without functional groups. For both OH and COOH functionalized graphite, we observe more than a 40 % increase in the volumetric loading over bare graphite for the highest weight % of the functional group and smallest pore width considered. The maximum volumetric loading decreases with a decrease in the wt% of the functional groups and with an increase in the pore width.
4

Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

Alezi, Dalal 06 1900 (has links)
Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials amenable to a rational design with targeted properties for given applications. Several design approaches have been deployed to construct targeted functional MOFs, where desired structural and geometrical attributes are incorporated in preselected building units prior to the assembly process. This dissertation illustrates the merit of the molecular building block approach (MBB) for the rational construction and discovery of stable and highly porous MOFs, and their exploration as potential gas storage medium for sustainable and clean energy applications. Specifically, emphasis was placed on gaining insights into the structure-property relationships that impact the methane (CH4) storage in MOFs and its subsequent delivery. The foreseen gained understanding is essential for the design of new adsorbent materials or adjusting existing MOF platforms to encompass the desired features that subsequently afford meeting the challenging targets for methane storage in mobile and stationary applications.In this context, we report the successful use of the MBB approach for the design and deliberate construction of a series of novel isoreticular, highly porous and stable, aluminum based MOFs with the square-octahedral (soc) underlying net topology. From this platform, Al-soc-MOF-1, with more than 6000 m2/g apparent Langmuir specific surface area, exhibits outstanding gravimetric CH4 uptake (total and working capacities). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the U.S. Department of Energy (DOE) challenging gravimetric and volumetric targets for the CH4 working capacity for on-board CH4 storage. Furthermore, Al-soc-MOF-1 exhibits the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. Additionally, the research studies presented in this dissertation highlight the latest discoveries on our continuous quest for highly-connected nets. Specifically, we report the discovery of two fascinating and highly-connected minimal edge-transitive nets in MOF chemistry, namely pek and aea topologies, via a systematic exploration of rare earth metal salts in combination with relatively less symmetrical 3-connected tricarboxylate ligands. Adsorption studies revealed that pek-MOF-1 offers excellent volumetric CO2 and CH4 uptakes at high pressures.
5

Natural gas (Methane) storage in activated carbon monolith of tailored porosity produced via 3D printing.

Abubakar, Abubakar Juma Abdallah 06 1900 (has links)
The ongoing energy and environmental crises have pushed the transportation sector, a major greenhouse gas emitter, to seek sustainable fuel and technology alternatives. Natural gas and bio-methane are potential alternatives with numerous advantages over conventional fuels. Adsorbed natural gas (ANG) technology uses porous adsorbent material to store methane efficiently at lower pressures. An issue limiting this technology is the lack of compact tanks with efficient adsorbent packing that increase storage capacity. This study addresses the need for more compact ANG tanks by creating novel binder-less monolithic activated carbon monolith adsorbents with targeted porosity. A template is produced using 3D printing and a commercially available phenolic resin as a filling material. Upon thermal treatment, the 3D-printed template combusts with molecular oxygen in its structure, and the resin is transformed into activated carbon by pyrolysis. Longer activation times led to higher BET surface areas. However, after activation periods beyond 15 minutes, the surface area increase is obtained at the expense of a higher burn-off, which affects the material density. Adsorption of 0.04g/g of methane was measured at 30 bar and 298 K on the activated carbon monolith with the highest BET surface area (516 m2/g). Results in the same conditions on a super high surface area Maxsorb activated carbon were 0.13g/g. Although the methane capacity obtained is lower than in a commercial sample, it was demonstrated that producing an activated carbon monolith with tailored porosity is possible. New techniques for activation should be studied to enhance their gravimetric capacity to make ANG competitive.
6

Gas Adsorption Applications of Porous Metal-Organic Frameworks

Ma, Shengqian 29 April 2008 (has links)
No description available.
7

Hydrostatic Pressure Retainment

Setlock, Robert J., Jr. 29 July 2004 (has links)
No description available.
8

Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons

Borchardt, Lars, Nickel, Winfried, Casco, Mirian, Senkovska, Irena, Bon, Volodymyr, Wallacher, Dirk, Grimm, Nico, Krause, Simon, Silvestre-Albero, Joaquín 05 April 2017 (has links) (PDF)
Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.
9

Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons

Borchardt, Lars, Nickel, Winfried, Casco, Mirian, Senkovska, Irena, Bon, Volodymyr, Wallacher, Dirk, Grimm, Nico, Krause, Simon, Silvestre-Albero, Joaquín 05 April 2017 (has links)
Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.
10

A highly porous flexible Metal–Organic Framework with corundum topology

Grünker, Ronny, Senkovska, Irena, Biedermann, Ralf, Klein, Nicole, Lohe, Martin R., Müller, Philipp, Kaskel, Stefan January 2011 (has links)
A flexible Metal–Organic Framework Zn4O(BenzTB)3/2 (DUT-13) was obtained by combination of a tetratopic linker and Zn4O6+ as connector. The material has a corundum topology and shows the highest pore volume among flexible MOFs. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0714 seconds