• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 3
  • 1
  • Tagged with
  • 34
  • 34
  • 13
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Radical Relay Strategies for C-H Functionalization of Alcohols

Nakafuku, Kohki Mitchell 18 June 2019 (has links)
No description available.
12

Relativistic Treatment of Confined Hydrogen Atoms via Numerical Approximations

Noon, Jacob 14 December 2018 (has links)
No description available.
13

Studies on Reactions Promoted by Photo-generated Bromine Radical / 光で生じる臭素ラジカルが促進する反応に関する研究

Kawasaki, Tairin 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23925号 / 工博第5012号 / 新制||工||1782(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 村上 正浩, 教授 杉野目 道紀, 教授 中尾 佳亮 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
14

Development of New N-Cyclopropyl Based Electron Transfer Probes for Cytochrome P-450 and Monoamine Oxidase Catalyzed Reactions

Grimm, Michelle L. 26 May 2011 (has links)
The recent upsurge of degenerative diseases believed to be the result of oxidative stress has sparked an increased interest in utilizing the fundamental principles of physical organic chemistry to understand biological problems. Enzyme pathways can pose several experimental complications due to their complexity, therefore the small molecule probe approach can be utilized in an attempt understand the more complex enzyme mechanisms. The work described in this dissertation focuses on the use of N-cyclopropyl amines that have been used as probes to study the mechanism of monoamine oxidase (MAO) and cytochrome P-450 (cP-450). A photochemical model study of benzophenone triplet (3BP) with the MAO-B substrate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and two of its derivatives, 1-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine and (+/-)-[trans-2-phenylcyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine is presented in Chapter 2. The barrier for ring opening of aminyl radical cations derived from N-cyclopropyl derivatives of tertiary amines (such as MPTP) is expected to be low. Reactions of 3BP with all three compounds are very similar. The results suggest that the reaction between benzophenone triplet and tertiary aliphatic amines proceed via a simple hydrogen atom transfer reaction. Additionally these model examinations provide evidence that oxidations of N-cyclopropyl derivatives of MPTP catalyzed by MAO-B may not be consistent with a pure SET pathway. The chemistry of N-cyclopropyl amines has been used to study the mechanism of amine oxidations by cP-450. Until recently, the rate constant for these ring opening reactions has not been reported. Direct electrochemical examinations of N-cyclopropyl-N-methylaniline showed that the radical cation undergoes a unimolecular rearrangement consistent with a cyclopropyl ring opening reaction. Examination of both the direct and indirect electrochemical data showed that the oxidation potential N-cyclopropyl-N-methylaniline to be +0.528 V (0.1 M Ag⁺/Ag), and rate constant for ring opening of 4.1 x 10⁴ s⁻¹. These results are best explained by two phenomena: (i) a resonance effect in which the spin and charge of the radical cation in the ring closed form is delocalized into the benzene ring hindering the overall rate of the ring opening reaction, and/or (ii) the lowest energy conformation of the molecule does not meet the stereoelectronic requirements for a ring opening pathway. Therefore a new series of spiro cyclopropanes were designed to lock the cyclopropyl group into the appropriate bisected conformation. The electrochemical results reported herein show that the rate constant for ring opening of 1'-methyl-3',4'-dihydro-1'H-spiro[cyclopropane-1,2'-quinoline] and 6'-chloro-1'-methyl-3',4'-dihydro-1'H-spiro[cyclopropane-1,2'-quinoline] are 3.5 x 10² s⁻¹ and 4.1 x 10² s⁻¹ with redox potentials of 0.3 V and 0.366 V respectively. In order to examine a potential resonance effect a derivative of N-methyl-N-cyclopropylaniline was synthesized to provide a driving force for the ring opening reaction thereby accelerating the overall rate of the ring opening pathway. The electrochemical results show that the rate constant for ring opening of 4-chloro-N-methyl-N-(2-phenylcyclopropyl)aniline to be 1.7 x 10⁸ s⁻¹ . The formal oxidation potential (E°OX) of this substrate was determined to be 0.53 V. The lowered redox potentials of 1'-methyl-3',4'-dihydro-1'H-spiro[cyclopropane-1,2'-quinoline] and 6'-chloro-1'-methyl-3',4'-dihydro-1'H-spiro[cyclopropane-1,2'-quinoline] can be directly attributed to the electron donating character of the ortho alkyl group of the quinoline base structure of these spiro derivatives, and therefore the relative energy of the ring closed radical cations directly affects the rate of ring opening reactions. The relief of ring strain coupled with the formation of the highly resonance stabilized benzylic radical explains the rate increase for the ring opening reaction of 4-chloro-N-methyl-N-(2-phenylcyclopropyl)aniline. / Ph. D.
15

Modulation of Hydroxyl Radical Reactivity and Radical Degradation of High Density Polyethylene

Mitroka, Susan M. 06 August 2010 (has links)
Oxidative processes are linked to a number of major disease states as well as the breakdown of many materials. Of particular importance are reactive oxygen species (ROS), as they are known to be endogenously produced in biological systems as well as exogenously produced through a variety of different means. In hopes of better understanding what controls the behavior of ROS, researchers have studied radical chemistry on a fundamental level. Fundamental knowledge of what contributes to oxidative processes can be extrapolated to more complex biological or macromolecular systems. Fundamental concepts and applied data (i.e. interaction of ROS with polymers, biomolecules, etc.) are critical to understanding the reactivity of ROS. A detailed review of the literature, focusing primarily on the hydroxyl radical (HO•) and hydrogen atom (H•) abstraction reactions, is presented in Chapter 1. Also reviewed herein is the literature concerning high density polyethylene (HDPE) degradation. Exposure to treated water systems is known to greatly reduce the lifetime of HDPE pipe. While there is no consensus on what leads to HDPE breakdown, evidence suggests oxidative processes are at play. The research which follows in Chapter 2 focuses on the reactivity of the hydroxyl radical and how it is controlled by its environment. The HO• has been thought to react instantaneously, approaching the diffusion controlled rate and showing little to no selectivity. Both experimental and calculational evidence suggest that some of the previous assumptions regarding hydroxyl radical reactivity are wrong and that it is decidedly less reactive in an aprotic polar solvent than in aqueous solution. These findings are explained on the basis of a polarized transition state that can be stabilized via the hydrogen bonding afforded by water. Experimental and calculational evidence also suggest that the degree of polarization in the transition state will determine the magnitude of this solvent effect. Chapter 3 discusses the results of HDPE degradation studies. While HDPE is an extremely stable polymer, exposure to chlorinated aqueous conditions severely reduces the lifetime of HDPE pipes. While much research exists detailing the mechanical breakdown and failure of these pipes under said conditions, a gap still exists in defining the species responsible or mechanism for this degradation. Experimental evidence put forth in this dissertation suggests that this is due to an auto-oxidative process initiated by free radicals in the chlorinated aqueous solution and propagated through singlet oxygen from the environment. A mechanism for HDPE degradation is proposed and discussed. Additionally two small molecules, 2,3-dichloro-2-methylbutane and 3-chloro-1,1-di-methylpropanol, have been suggested as HDPE byproducts. While the mechanism of formation for these products is still elusive, evidence concerning their identification and production in HDPE and PE oligomers is discussed. Finally, Chapter 4 deals with concluding remarks of the aforementioned work. Future work needed to enhance and further the results published herein is also addressed. / Ph. D.
16

Proximity Effects in the Electron Impact Mass Spectra of 2-Substituted Benzazoles

Chantler, Thomas, Perrin, Victoria L., Donkor, Rachel E., Cawthorne, Richard S., Bowen, Richard D. January 2004 (has links)
No / The 70 eV electron impact mass spectra of a wide range of 2-substituted benzazoles are reported and discussed. Particular attention is paid to the mechanistic significance and analytical utility of [M–H]+ and [M–X]+ signals in the spectra of benzazoles in which the 2-substituent contains a terminal aryl group with one or more substituents, X. Loss of H or X occurs preferentially from an ortho-position from ionized 2-benzylbenzimidazoles, 2-phenethylbenzimidazoles, 2-styrylbenzimidazoles, 2-styrylbenzoxazoles and 2-styrylbenzothiazoles. In the three styrylbenzazole series, the [M–H]+ and/or [M–X]+ signals dominate the spectra. This unusually facile loss of H or X may be attributed to a proximity effect, in which cyclization of the ionized molecule is followed by elimination of an ortho-substituent to give an exceptionally stable polycyclic ion. Formation of a new five- or six-membered ring by the proximity effect occurs rapidly; cyclization to a seven-membered ring takes place rather less readily; but formation of a ring with only four atoms or more than seven atoms is not observed to a significant extent. The proximity effect competes effectively with loss of a methyl radical by simple cleavage of an ethyl, isopropyl and even a t-butyl group in the pendant aromatic ring of ionized 2-(4-alkylstyryl) benzazoles.
17

Cálculo e análise de efeitos de campo magnético nos estados eletrônicos de impurezas rasas em materiais semicondutores /

Souza, Gustavo Vanin Bernardino de. January 2009 (has links)
Orientador: Alexys Bruno Alfonso / Banca: Fábio de Jesus Ribeiro / Banca: André Luiz Malvezzi / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem caráter institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Resumo: São calculados os níveis de energia para o átomo de hidrogênio sob campo magnético uniforme, utilizando o método das diferenças finitas. Estes resultados, quando multiplicados pelo Rydberg efetivo (que depende da massa efetiva e da permitividade elétrica do meio) correspondem à solução do problema de um elétron ligado a uma impureza doadora rasa em um semicondutor sob campo magnético (caso isotrópico, parabólico, não degenerado). Os valores encontrados, para campo nulo, são comparados com a solução analítica. Para campos magnéticos não nulos as soluções são comparadas com resultados teóricos obtidos mediante o método variacional ou por expansão em séries de potências na direção radial. O efeito do campo magnético sobre os orbitais atômicos é analisado a partir da representação gráfica dos mesmos. Os valores numéricos das energias de transição são comparados com dados experimentais para impurezas doadoras rasas em GaN, GaAs e InP. / Abstract: The energy levels of the hydrogen atom in a uniform magnetic field are calculated by using the finite difference method. The resulting energy levels, when multiplied by the effective Rydberg (that depends on the effective mass and the electric permittivity of the medium), correspond to the energy levels of an electron bound to a shallow donor impurity in a semiconductor (with non-degenerate, parabolic and isotropic conduction band) subject to a magnetic field. The results in the absence of the magnetic field are compared with the analytical solutions. For finite magnetic-field strengths, the solutions are compared with the results obtained by the variational method or through an expansion in a power series of the radial variable. The effect of the magnetic field on the atomic orbitals is analyzed with the aid of their graphical representation. The calculated transition energies are compared with experimental data for shallow donor impurities in GaN, GaAs e InP. / Mestre
18

Cálculo e análise de efeitos de campo magnético nos estados eletrônicos de impurezas rasas em materiais semicondutores

Souza, Gustavo Vanin Bernardino de [UNESP] 30 March 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:19Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-03-30Bitstream added on 2014-06-13T20:40:13Z : No. of bitstreams: 1 souza_gvb_me_bauru.pdf: 3790655 bytes, checksum: 36b7d2cf1f9336099c7b86d22eaf6c33 (MD5) / Secretaria de Educação do Estado de São Paulo / São calculados os níveis de energia para o átomo de hidrogênio sob campo magnético uniforme, utilizando o método das diferenças finitas. Estes resultados, quando multiplicados pelo Rydberg efetivo (que depende da massa efetiva e da permitividade elétrica do meio) correspondem à solução do problema de um elétron ligado a uma impureza doadora rasa em um semicondutor sob campo magnético (caso isotrópico, parabólico, não degenerado). Os valores encontrados, para campo nulo, são comparados com a solução analítica. Para campos magnéticos não nulos as soluções são comparadas com resultados teóricos obtidos mediante o método variacional ou por expansão em séries de potências na direção radial. O efeito do campo magnético sobre os orbitais atômicos é analisado a partir da representação gráfica dos mesmos. Os valores numéricos das energias de transição são comparados com dados experimentais para impurezas doadoras rasas em GaN, GaAs e InP. / The energy levels of the hydrogen atom in a uniform magnetic field are calculated by using the finite difference method. The resulting energy levels, when multiplied by the effective Rydberg (that depends on the effective mass and the electric permittivity of the medium), correspond to the energy levels of an electron bound to a shallow donor impurity in a semiconductor (with non-degenerate, parabolic and isotropic conduction band) subject to a magnetic field. The results in the absence of the magnetic field are compared with the analytical solutions. For finite magnetic-field strengths, the solutions are compared with the results obtained by the variational method or through an expansion in a power series of the radial variable. The effect of the magnetic field on the atomic orbitals is analyzed with the aid of their graphical representation. The calculated transition energies are compared with experimental data for shallow donor impurities in GaN, GaAs e InP.
19

About Supersymmetric Hydrogen

Schneider, Robin January 2017 (has links)
No description available.
20

C-H Functionalization by High-valent Formally Copper(III) Complexes

Bower, Jamey Kevin 07 September 2022 (has links)
No description available.

Page generated in 0.0712 seconds