• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combustion Wave Propagation Regimes in a Channel equipped with an Array of Cross-flow Cylindrical Obstacles

Pinos, THOMAS 19 July 2013 (has links)
Flame propagation through a channel equipped with obstacles was studied experimentally. Two types of obstacle geometries were investigated, i.e., wall-mounted cross-flow cylinders and fence-type obstacles mounted on the top and bottom channel surfaces. The motivation for this research is its applications to both high-speed propulsion and industrial explosion safety. The effect of obstacle distribution and blockage ratio on flame acceleration was investigated in a 2.54cm x 7.6cm “narrow” channel with wall-mounted cross-flow cylindrical obstacles. The cylinders were arranged in a “staggered” or “inline” pattern, with blockage ratios of 0.5 and 0.67. Schlieren images were used to study the flame shape and its leading edge velocity for a range of fuel-air mixtures compositions. It was determined that initial flame propagation occurs faster in higher blockage ratios due to the higher frequency perturbation to the flow. Flame acceleration led to different quasi-steady flame and detonation propagation regimes. In general, higher final steady flame velocities were reached in the lower blockage ratios, and detonation limits were found to be influenced by the geometry. The influence of channel width on flame acceleration was also determined using fence-type obstacles with a single blockage ratio. Experiments were performed in a 2.54cm x 7.6cm and 7.6cm x 7.6cm channel. Schlieren images were again used to study the flame shape and to obtain leading edge velocity. The flame tip was found to have a parabolic profile across the channel width for the narrower channel and flatter profile in the wider channel. It was determined that the channel width has a weak effect on the flame velocity down the channel length. As such, flame acceleration was initially only slightly more pronounced in the narrow channel before the reverse became true later in the wide channel. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-07-18 21:13:40.436
2

水素-空気予混合気の流路内触媒燃焼に関する素反応機構による数値解析

YAMAMOTO, Kazuhiro, MATSUNAGA, Shuichi, YAMASHITA, Hiroshi, KOGE, Shunichi, 山本, 和弘, 松永, 秀一, 山下, 博史, 高下, 峻一 January 2007 (has links)
No description available.
3

Schlieren and PLIF imaging for hydrogen-air detonations /

Rojas Chavez, Samir Boset January 2019 (has links)
Orientador: João Andrade de Carvalho / Resumo: Application technologies based on the detonation cycle has proven a significant impact on the overall efficiency. However, detonation engines are not currently available on the markets due to the lack of physical and chemical knowledge of the detonation phenomenon. The present study aims to provide new insights by studying the pressure and velocity, the density gradient of the detonation wave, and the OH distribution on the reaction zone of hydrogen-air detonation. Three strategies were proposed to obtain repeatable detonation events. The strategies vary on the geometry of the obstacle and the amount of spark plug to ignite the mixture. Pressure and velocity were recorded to determine if the transition from deflagration to detonation is successful. To image the density gradient of the shock wave, the optical technique called Schlieren was adapted to the detonation test bench. The OH radical distribution was studied by the optical diagnostic technique called planar laser-induced fluorescence. The pressure trace results showed high peaks in the regimen of Chapman-Jouguet state for detonation, unlike fast flames. The velocity results showed a considerable influence of the obstacle geometry to enhance the velocity of the wave, although the repeatable detonation events and the steadiness of the velocity were not boosted. The third strategy proved that adding more energy to a transient detonation wave, enhanced the stability and the consistent production of detonation events. The S... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
4

Experimental investigation of hot-jet ignition of methane-hydrogen mixtures in a constant-volume combustor

Paik, Kyong-Yup 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Investigations of a constant-volume combustor ignited by a penetrating transient jet (a puff) of hot reactive gas have been conducted in order to provide vital data for designing wave rotor combustors. In a wave rotor combustor, a cylindrical drum with an array of channels arranged around the axis spins at a high rpm to generate high-temperature and high-pressure product gas. The hot-gas jet ignition method has been employed to initiate combustion in the channels. This study aims at experimentally investigating the ignition delay time of a premixed combustible mixture in a rectangular, constant-volume chamber, representing one channel of the wave rotor drum. The ignition process may be influenced by the multiple factors: the equivalence ratio, temperature, and the composition of the fuel mixture, the temperature and composition of the jet gas, and the peak mass flow rate of the jet (which depends on diaphragm rupture pressure). In this study, the main mixture is at room temperature. The jet composition and temperature are determined by its source in a pre-chamber with a hydrogen-methane mixture with an equivalent ratio of 1.1, and a fuel mixture ratio of 50:50 (CH4:H2 by volume). The rupture pressure of a diaphragm in the pre-chamber, which is related to the mass flow rate and temperature of the hot jet, can be controlled by varying the number of indentations in the diaphragm. The main chamber composition is varied, with the use of four equivalence ratios (1.0, 0.8, 0.6, and 0.4) and two fuel mixture ratios (50:50, and 30:70 of CH4:H2 by volume). The sudden start of the jet upon rupture of the diaphragm causes a shock wave that precedes the jet and travels along the channel and back after reflection. The shock strength has an important role in fast ignition since the pressure and the temperature are increased after the shock. The reflected shock pressure was examined in order to check the variation of the shock strength. However, it is revealed that the shock strength becomes attenuated compared with the theoretical pressure of the reflected shock. The gap between theoretical and measured pressures increases with the increase of the Mach number of the initial shock. Ignition delay times are obtained using pressure records from two dynamic pressure transducers installed on the main chamber, as well as high-speed videography using flame incandescence and Schileren imaging. The ignition delay time is defined in this research as the time interval from the diaphragm rupture moment to the ignition moment of the air/fuel mixture in the main chamber. Previous researchers used the averaged ignition delay time because the diaphragm rupture moment is elusive considering the structure of the chamber. In this research, the diaphragm rupture moment is estimated based on the initial shock speed and the longitudinal length of the main chamber, and validated with the high-speed video images such that the error between the estimation time and the measured time is within 0.5%. Ignition delay times decrease with an increase in the amount of hydrogen in the fuel mixture, the amount of mass of the hot-jet gases from the pre-chamber, and with a decrease in the equivalence ratio. A Schlieren system has been established to visualize the characteristics of the shock wave, and the flame front. Schlieren photography shows the density gradient of a subject with sharp contrast, including steep density gradients, such as the flame edge and the shock wave. The flame propagation, gas oscillation, and the shock wave speed are measured using the Schlieren system. An image processing code using MATLAB has been developed for measuring the flame front movement from Schlieren images. The trend of the maximum pressure in the main chamber with respect to the equivalence ratio and the fuel mixture ratio describes that the equivalence ratio 0.8 shows the highest maximum pressure, and the fuel ratio 50:50 condition reveals lower maximum pressure in the main chamber than the 30:70 condition. After the combustion occurs, the frequency of the pressure oscillation by the traversing pressure wave increases compared to the frequency before ignition, showing a similar trend with the maximum pressure in the chamber. The frequency is the fastest at the equivalence ratio of 0.8, and the slowest at a ratio of 0.4. The fuel ratio 30:70 cases show slightly faster frequencies than 50:50 cases. Two different combustion behaviors, fast and slow combustion, are observed, and respective characteristics are discussed. The frequency of the flame front oscillation well matches with that of the pressure oscillation, and it seems that the pressure waves drive the flame fronts considering the pressure oscillation frequency is somewhat faster. Lastly, a feedback mechanism between the shock and the flame is suggested to explain the fast combustion in a constant volume chamber with the shock-flame interactions.
5

Mécanisme d’accélération d’une flamme de prémélange hydrogène/air et effets sur les structures / Flame propagation mechanisms of premixed hydrogen/air mixtures and effects of combustion generated loads on structures

Scarpa, Roberta 19 December 2017 (has links)
Le risque d’explosion des mélanges H2/air revêt toujours une importance cruciale pour la gestion des accidents graves dans les centrales nucléaires. Des critères expérimentaux ont été proposés dans les années 2000 par Dorofeev et al. afin de déterminer les conditions nécessaires à l’accélération de flamme et à la TDD. Ce travail de thèse a l’objectif de mieux comprendre les mécanismes d’accélération des flammes de prémélange H2/air et de fournir une solide base de données expérimentales pour la validation des codes utilisés pour les études de sûreté. Les expériences ont été menées dans un tube muni d’obstacles (taux de blocage entre 0.3 et 0.6) avec un diamètre interne de 12 cm et une longueur d’environ 5 m. Les effets de la pression initiale et de la dilution en azote sur des mélanges pauvres en H2 ont été étudiés. Les résultats montrent que la pression favorise l’accélération seulement pour les mélanges les plus réactifs et que la surpression induite par la combustion est directement proportionnelle à la pression initiale. Les interactions flamme-choc ainsi que les instabilités thermo-diffusives jouent un rôle important sur la propagation de flamme. Une nouvelle technique a été développée dans le but d’obtenir une représentation plus fine du profil de vitesse de flamme. Des mesures d’absorption IR résolues dans le temps ont été effectuées en dopant le mélange avec un alcane. Le profil de vitesse a été obtenu en mesurant la variation d’extension du gaz frais pendant l’avancement de la flamme. Enfin, des analyses préliminaires ont été menées pour la conception d’un nouveau dispositif expérimental pour l’étude des effets de la combustion sur des structures en acier inox. / Flame acceleration and explosion of hydrogen/air mixtures remain key issues for severe accident management in nuclear power plants. Empirical criteria were developed in the early 2000s by Dorofeev and colleagues providing effective tools to discern possible FA or DDT scenarios. The objectives of the present work are to better understand the mechanisms of acceleration for premixed H2/air flames and to provide a solid base of experimental data for the validation of the codes used for safety analyses. The experiments were performed in an obstacles-laden tube (blockage ratio between 0.3 and 0.6) with 120 mm internal diameter and about 5 m length. The effects of the initial pressure and the nitrogen dilution on lean H2 mixtures have been studied. The results show that pressure promote flame acceleration only for highly reactive mixtures. Moreover, the overpressure induced by the combustion is directly proportional to the initial pressure. Besides, flame-shock interactions and thermo-diffusive instabilities play an important role in flame acceleration. A new technique to track the flame position along the tube has been developed in order to obtain a finer representation of the flame velocity profile. The method consists in performing time-resolved IR absorption measurements by doping the mixture with an alkane. The velocity profile is then derivedby measuring the variation of the extension in depth of the unburnt gas along the tube axis. Finally, analyses on the effects of combustion generated loads on stainless steel structures were performed in order to provide preliminary results for the design of a new experimental device.

Page generated in 0.0502 seconds