Spelling suggestions: "subject:"hydrogenotrophic methanogenic"" "subject:"ydrogenotrophic methanogenic""
1 |
BENCH-SCALE CONVERSION OF CARBON DIOXIDE TO A HYDROCARBON FUELKennedy, Melissa L. 29 September 2009 (has links)
No description available.
|
2 |
Investigating effects of electron donor availability on cathodic microbial community structure and functional dynamics in electromethanogenesisRagab, Alaa I. 10 1900 (has links)
Microbial electrochemical technologies (MET) exploit the bioelectrocatalytic activity of
microorganisms, with a main focus on waste-to-resource recovery.
Electromethanogenesis, a type of MET, describes the process of CO2 reduction
specifically to methane, catalyzed by methanogens that utilize the cathode directly as
an electron donor or through H2 evolving from the cathode surface. Applications are
mainly in the direction of bioelectrochemical power-to-gas, as well as biogas upgrading
and carbon capture and utilization. As the cathode and its associated microbial
consortia are key to the process, larger scale applications require improvements
especially in terms of optimal operational parameters, cathode materials and the
dynamics of the effect of electron transfer within the cathodic biofilm. The focus of this
dissertation is to improve the understanding of the dynamics and function of methaneproducing
biofilms grown on cathodes in electromethanogenic reactors in the presence
of two different electron donors: the cathode and the H2 evolving from the cathode
surface. The spatial homogeneity of the microbial communities across the area of the
cathode was demonstrated, which is relevant for large scale applications where
reproducibility is required for predictable engineered systems. Metagenomic and
metatranscriptomic methods were applied to elucidate the short-term changes in the
actively transcribed methanogenesis and central carbon assimilation pathways in
response to varying the availability of electrons by changing the set cathode potential in
a novel Methanobacterium species enriched from electromethanogenic
biocathodes. Although changes in functional performance were evident with varying
potential, no significant differential expression was observed and genes from the
methanogenesis and carbon assimilation pathways were highly expressed throughout.
Indium tin oxide (ITO) as a potentially hydrogen evolution reaction (HER) – inert
cathode material was evaluated using the mixotrophic Methanosarcina barkeri in an
attempt to develop a simplified material-science driven approach to future electron
transfer studies. It was found to be electrochemically unstable under the tested
conditions, losing its conductivity over time. Overall, the findings from these studies
provide new knowledge on the effects of electron donor availability on the functional
performance and the biocathode community dynamics. The understandings derived
from the study are relevant to methanogenic processes and should aid in system scaleup
design.
|
3 |
Valorisation des biodéchets alimentaires commerciaux par des procédés anaérobies / Valorization of commercial food waste via anaerobic processesCapson Tojo, Gabriel 12 December 2017 (has links)
La production croissante de déchets alimentaires dans le monde et des nouvelles réglementations internationales exigent le développement de nouveaux procédés pour le traitement de ce type de déchets. Parmi toutes les possibilités existantes, les procédés anaérobies représentent une approche durable qui permet le traitement et la valorisation de ces déchets. Ce doctorat vise à comprendre les processus biochimiques régissant la digestion anaérobie des déchets alimentaires, en fournissant des éléments pour le développement de procédés applicables à l'échelle industrielle.Dans un premier temps, un screening a été effectué pour élucider les paramètres principaux affectant la digestion anaérobie des déchets alimentaires, en évaluant différentes charges de substrat, teneurs en matière sèche, proportions de co-digestion et des inocula microbiens de différentes origines. Après avoir conclu l'importance cruciale de l'inoculum utilisé et de la charge du substrat, différentes stratégies de stabilisation des procédés de méthanisation ont été testées à l'aide de réacteurs discontinus consécutifs. Ce travail a permis de confirmer l'effet positif de la supplémentation des oligoéléments et à identifier le principal verrou: l'accumulation d'acide propionique. Dans le but de trouver une solution, deux expériences ont été axées sur l'évaluation de la capacité des matériaux conducteurs à base de carbone à résoudre ce problème. Le dosage de ces matériaux favorisait la cinétique de la digestion, améliorant significativement les productions volumétriques du méthane.Cette thèse fournit des connaissances nouvelles, à la fois sur les principaux mécanismes régissant la digestion anaérobie des déchets alimentaires et sur les implications qu'elles présentent pour la valorisation de ces déchets. En outre, des solutions possibles pour lever les verrous opérationnels ont été développés, permettant de fournir des recommandations pour l’implantation d’un procédé de digestion à l’échelle industrielle. / The increasing production of food waste worldwide and new international regulations call for the development of novel processes for the treatment of this waste. Among all the existing possibilities, anaerobic processes represent a sustainable-modern approach that allows waste treatment and valorization. This PhD thesis aims at understanding the biochemical processes governing anaerobic digestion of food waste, eventually providing a stable process applicable at industrial scale.As a first step, a screening was performed to elucidate the main parameter affecting anaerobic digestion of food waste, evaluating different substrate loads, solid contents, co-digestion proportions and microbial inocula from different origins. After concluding the critical importance of the inoculum used and the substrate load, different strategies for process stabilization for methane production were tested using consecutive batch reactors. This served for confirming the positive effect of supplementation of trace elements and to identify the main issue that was found: accumulation of propionic acid. Aiming at finding a solution, the final experiments were focused on assessing the capability of carbon-based conductive materials to solve this problem. The dosing of these materials favored the digestion kinetics, improving greatly the methane volumetric productivities.This thesis provides novel insights, both on the main mechanisms governing food waste anaerobic digestion and on the implications that they present for the valorization of this waste. In addition, potential solutions for the complications found are given, aiding to the development of a feasible industrial digestion process.
|
Page generated in 0.1119 seconds