• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 62
  • 49
  • 34
  • 21
  • 8
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 598
  • 217
  • 122
  • 92
  • 89
  • 64
  • 62
  • 60
  • 59
  • 56
  • 43
  • 41
  • 40
  • 40
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Geochemical Characterization and Longevity Estimates of a Permeable Reactive Barrier System Remediating a 90Sr plume

Hoppe, Jutta January 2012 (has links)
In 1998, a permeable reactive barrier system was installed at the Atomic Energy of Canada Ltd. (AECL) Chalk River Laboratories in Chalk River, Ontario, to prevent the discharge of a 90Sr plume into a nearby swamp. The system known as the “Wall and Curtain” contains clinoptilolite, a zeolite, as a reactive material to sorb 90Sr. The overall objective of this study was to provide refined estimates of the efficiency and longevity of the system. To better understand the flow in the aquifer and through the Wall and Curtain, a detailed physical field characterization of the site was performed. Borehole-dilution tests were performed in 19 mm (¾ inch) drive-point piezometers. The results indicate that the Wall and Curtain system intercepted deeper, contaminated groundwater as intended. Hydraulic conductivities (K) determined through slug tests indicate that the aquifer was relatively homogeneous. Average linear groundwater velocities determined through borehole dilution compared well with velocities determined through the Darcy equation based on slug-test K estimates. The measurements from the field study were used to develop a three dimensional physical flow model. The numerical computer code HydroGeoSphere was used to provide an approximate representation of groundwater flow in the aquifer and through the Wall and Curtain. The model was calibrated by comparing simulated and observed hydraulic head values across the site. The model showed good agreement with the observed heads and acceptable agreement with the field estimates of groundwater velocities. A detailed geochemical characterization of the aquifer and the reactive material, clinoptilolite, was performed through field and laboratory work. Pore-water samples were taken from multiple locations in the aquifer. Solid and pore-water samples from the reactive material were used to determine distribution coefficients for 90Sr and competing cations. Sequential leach tests were performed on small amounts of the radioactive solid samples. Results indicate that the system was highly efficient in treating an average mass flux of > 17,000 Bq/m2day-1. The leading edge of the plume was found to have only reached 40 cm into the 2 m thick Curtain of clinoptilolite after nearly 14 years of operation. The reactive material readily sorbed 90Sr, with a distribution coefficient of > 76,000 mL/g for beta activity. Kinetically controlled ion exchange was the main mechanism of sorption onto the clinoptilolite for most cations. The results indicate that the system was highly efficient. Reactive transport models of the site using two different numerical codes, HydroGeoSphere and MIN3P, were constructed to provide refined estimates of the longevity of the system. The model constructed in HydroGeoSphere included five solutes. Zoned distribution coefficients were specified for the transported solutes. In MIN3P, only the reactive material was used as a model domain. Typical concentrations of the plume were specified. Ion exchange was considered in the simulation, as well as radioactive decay of Sr. An updated version of MIN3P was used which also considers kinetic sorption of Sr. Longevity estimates of the different simulations ranged between 30 years and over 200 years for the Wall and Curtain system. Based on field and laboratory experiments, longevity estimates of 80 years to 100 years seemed more reasonable. Results of the numerical simulation indicate that by that time, the system would have remediated 1200 MBq of 90Sr. Continuous monitoring of the outflow will ensure that the time-to-replacement of the system will be met.
132

Geological and human influences on groundwater flow systems in range-and-basin areas: the case of the Selva Basin (Catalonia, NE Spain)

Folch Sancho, Albert 15 June 2010 (has links)
El comportament hidrodinàmic de les aigües subterrànies en conques intramuntanyoses ve condicionat principalment per la geologia, i especialment pel context estructural i els materials sedimentaris que reomplen la conca. L'estudi d'aquestes àrees requereix un enfocament a gran escala per poder determinar les zones de recàrrega i descàrrega dels diferents sistemes de flux que conformen els recursos hídrics de la zona. Aquestes zones solen estar afectades per un fort desenvolupament humà que pot donar lloc a una modificació de la quantitat i la qualitat de l'aigua subterrània de diferents formes. En aquest sentit, en conques intramuntanyoses és un aspecte clau entendre la importància de la geologia i de les pressions humanes en el flux d'aigua subterrània per arribar a assolir una gestió correcta dels recursos hídrics, així com per assegurar llur disponibilitat a llarg termini. En aquesta tesi s'ha estudiat la depressió de la Selva com a un cas paradigmàtic on té lloc una important pressió sobre els recursos hídrics subterranis. Per tal d'estudiar el paper hidrogeològic que juguen les falles regionals en conques intramuntanyoses, en primer lloc, s'ha realitzat un model hidrogeològic conceptual a partir de la modelització del flux subterrani. Per fer&#8208;ho, s'ha dut a terme una simulació d'una zona de falla subjacent a una formació al&#8729;luvial, on la falla pot recarregar o drenar l'aqüífer al&#8729;luvial. S'han considerat diferents valors de permeabilitat per la zona muntanyosa, la zona de falla i els materials sedimentaris, així com diferents gruixos de falla i condicions de contorn. Els resultats mostren que es poden produir fluxos verticals ascendents i descendents a la part superior de la zona de falla degut a l'acció de la formació al&#8729;luvial, i fins i tot a través del sòcol, influenciant per tant la recàrrega dels materials sedimentaris de la depressió. En segon lloc, s'ha caracteritzat el sistema hidrogeològic de la depressió de la Selva mitjançant mesures del nivell piezomètric i dades hidroquímiques e isotòpiques (&#948;18O, &#948;D) al llarg de diverses campanyes de camp amb un doble objectiu: (i) caracteritzar un sistema hidrodinàmic on els elements tectònics juguen un paper important en la hidrodinàmica subterrània, i (ii) descriure la influència de l'explotació d'aigües subterrànies en la hidrodinàmica del sistema. Els resultats piezomètrics han posat de manifest la relació existent entre les formacions situades a les zones de muntanya que envolten la depressió i els materials sedimentaris que rebleixen aquesta. Les zones de falla tenen un efecte directe en la recarrega, permetent l'existència de fluxos verticals ascendents des del sòcol cap a diferents aqüífers sedimentaris. Les dades hidroquímiques i isotòpiques han validat aquestes observacions. En aquest sentit l'ió fluor (< 15 mg/l) i nitrat (< 217 mg/l) han estat usats com a traçadors dels fluxos profunds i superficials respectivament i han permès posar de manifest l'efecte dels bombejos en la distribució de les línies de flux. La composició isotòpica de la molècula de l'aigua (&#61540;18OH2O, &#61540;D) ha evidenciat canvis estacionals en les aigües captades pels pous posant de manifest l'existència de dos sistemes de flux: un sistema de flux regional amb llargs temps de trànsit i originat a les zones circumdants més elevades, i un sistema de flux local recarregat a la zona de la depressió. Els dos sistemes contribueixen de manera diferent als recursos hídrics que s'estan explotant, i la seva aportació específica defineix el potencial de la depressió per una explotació sostenible a llarg termini. S'han caracteritzat les aigües des d'un punt de vista hidroquímic a partir de la composició en elements majoritaris, minoritats i traça (fluor, brom, liti, TOC) i de dades isotòpiques (&#61540;18OH2O, &#61540;D, triti, &#61540;34SSO4, &#61540;18OSO4). Aquesta caracterització ha permès una descripció acurada dels processos geoquímics que defineixen les fàcies hidroquímiques de l'aigua subterrània al llarg de la depressió de la Selva. Així, s'han definit dos sistemes de flux regional i diferents qualitats de l'aigua associada a la recarrega local, i alhora s'ha corroborat el model hidrogeològic conceptual de la depressió de la Selva. Des d'un punt de vista regional, a la depressió de la Selva el control estructural defineix sistemes de flux locals, intermitjos i regionals, els quals son responsables de la hidrodinàmica a gran escala, fins al punt que aquests son responsables de la recuperació dels descensos del nivell piezomètric després del període de màxima extracció (estiu). A la zona d'estudi, l'origen de la recarrega, a escala regional, és atribuïda a la serralada Transversal, a la zona més septentrional de la conca, i a les Guilleries, especialment a la zona oest. Aquests sistemes hidrogeològics impliquen un flux vertical ascendent des del sòcol que recarrega els nivells aqüífers neògens de la depressió. Els sistemes de flux locals i intermitjos s'originen a la pròpia depressió o a les zones circumdants més properes, els quals estan menys afectats per les zones de falla. La pressió antròpica crea una barreja entre els diferents sistemes de flux modificant la qualitat de l'aigua al llarg de l'any. Els resultats d'aquest estudi mostren que en conques intramuntanyoses per obtenir una caracterització integrada del sistema hidrogeològic i el coneixement necessari per formular estratègies específiques cap a una gestió sostenible dels recursos hídrics, i en concret a la depressió de la Selva, és necessari: i) la utilització de diferents metodologies per abordar l'estudi d'aquests tipus de sistemes hidrogeològics. Així, en el present treball primerament s'aborda des de la caracterització de camp fins a la modelització numèrica passant per l'estudi de nivell piezomètrics i dades hidroquímiques e isotòpiques; ii) caracteritzar l'evolució piezomètrica de les diferents formacions geològiques juntament amb les característiques hidroquímiques/isotòpiques i els processos geoquímics relacionats que defineixen les mostres d'aigua, i per tant, cada un dels extrems de barreja de la recarrega (local, intermitja i regional) que participen en el conjunt del sistema de flux; iii) finalment, identificar les pressions humanes, fins i tot en els sistemes a més gran escala, com una verdadera alteració al comportament natural. Aquesta tesi defineix els sistema hidrogeològic de la depressió de la Selva com a exemple de funcionament hidrodinàmic sota pressions antròpiques aplicable a altres conques intramuntanyoses. Aquest coneixement és necessari per formular estratègies de gestió dels recursos hídrics des d'un punt de vista quantitatiu i qualitatiu, com a eina indispensable per satisfer la demanda lligada a una millora socioeconòmica sense produir un empitjorament de la qualitat ambiental a llarg termini. / Groundwater hydrodynamics in range&#8208;and&#8208;basin areas are essentially determined by their geology, including the tectonic structure and the basin sedimentary infilling. Their study requires a large&#8208;scale approach to determining the location of the recharge and discharge areas of each flow system providing the basin with water resources. Furthermore, most of these areas have undergone heavy human development that can modify groundwater quantity and/or quality in different ways. Understanding geological and human influences on groundwater flow in these areas is a key aspect in achieving an adequate water resources management and therefore its future availability. In this dissertation, the Selva Basin has been studied as a paradigmatic case of a range&#8208;and¬basin area with severe human pressure on its groundwater resources.A conceptual hydrogeological model emphasizing the role of the main fault zones has been developed and tested using numerical flow modeling as a first step. Groundwater flow has been simulated in a range&#8208;and&#8208;basin area affected by a significant fault zone, which may drain or recharge an overlying alluvial aquifer. Various hydraulic conductivity values for the range rocks, the fault¬zone, and the sedimentary infilling of the basin are considered, as well as different fault&#8208;zone widths and boundary conditions. The results show that upward and downward fluxes develop in the upper part of the fault zone controlled by the action of the alluvial aquifer, and even through the basement floor, which influence the recharge of the sedimentary infilling of the basin.Second, the Selva range&#8208;and&#8208;basin hydrogeological system is described using potentiometric, hydrochemical, and isotopic data (&#948;18O, &#948;D) taken from different field surveys, in order to achieve a twofold objective: (i) to describe a hydrogeological system in which tectonic elements play a significant role in the flow dynamics, and (ii) to show the influence of groundwater exploitation on the hydrodynamics of the system. Hydraulic head data indicate the relationships between the geological formations in the range areas and the sedimentary infill of the basin. In this context, fault zones and a fracture network have a direct effect on the recharge, and allow an upward vertical flow from the basement to the sedimentary aquifers. Hydrochemical and isotopic data support this observation. The use of fluoride (up to 15 mg/l) and nitrate (up to 217 mg/l) as tracers for the contribution of deep and shallow flow systems respectively provides a detailed portrait of the effects of pumping on the flowpath distribution. Isotopic data depict seasonal trends in groundwater captured by wells. Two distinct flow systems are differentiated: a regional, large&#8208;scale, long residence time system, originating in the surrounding ranges, and a local flow system constituted by infiltration in the lower areas of the basin. The two systems contribute differently to the resources that are withdrawn, and their specific contributions define the potential for sustainable future water exploitation in the basin. The final part of this hydrogeological study is a more specific description of the geochemical processes that determine the hydrochemical characteristics of groundwater across the Selva basin, based on the interpretation of major, minor and trace elements (such as fluoride, bromide, lithium, TOC, and their ratios to some major elements), and isotope data (&#61540;18OH2O, &#61540;D, tritium,&#61472;&#61540;34SSO4,&#61472;&#61540;18OSO4). It defines two different regional flow systems and different water qualities of local recharge anduses this specific data to corroborates the overall hydrogeologic conceptual model for the Selva range&#8208;and&#8208;basin area. From a methodological perspective, this chapter explores the use of minor elements and isotopes in the interpretation of regional scale system hydrodynamics. It also discusses their use as tracers of the distinct ground water flows originating in distinct recharge areas and influenced by an intricate tectonic setting. The results of this dissertation describe the flow system of the Selva basin. In this basin, structural control defines the local, intermediate and regional flow systems responsible for the large&#8208;scale hydrodynamics of the basin and, more importantly, the recovery of drawdown after the main withdrawal period (summer). The origin of the recharge of the large&#8208;scale, regional flow systems is assigned to the Transversal range on the northern side and to the Guilleries range, especially in the western part. These hydrogeological systems include a groundwater flow within the basement and an upward vertical recharge from the basement to the overlying Neogene sedimentary layers. The local and intermediate flow systems originate in the basin itself or in the less&#8208;elevated surrounding ranges, and the fault system has a minor effect on their flowpaths. Human development modifies the flow paths mixing the different flow systems and changing the water quality along the year seasons. From a broader point of view, this highlights the value of using different methodological insights in the study of these hydrogeological systems, as well as addressing the problem of water management in complex geological environments. First, it presents the outcome of various methodologies ranging from field work to numerical modeling, together with the analysis of hydraulic head, hydrochemical and isotopical data. Second, it shows the relevance of potentiometric evolution in different geological settings, and the treatment of the hydrochemical/isotopic features and related geochemical processes that define groundwater samples and therefore each of the recharge end&#8208;members (local, intermediate, and regional) that participate in the overall flow systems. Finally, it identifies the effect of human pressures even on large&#8208;scale flow systems, as true alterations of natural behavior. The recognition of these effects, together with an integrated characterization of the hydrogeological system, provides the necessary knowledge for formulating specific strategies for assessment focusing on sustainability of water resources management in these geological contexts. In specific terms, these strategies must be based on the importance of the groundwater flow terms in the water balance for a given hydrological basin. These terms are usually overlooked, yet they play an important role, especially when groundwater resources from deep confined (or leaky) aquifers are exploited. In the case of the Selva basin, identifying this contribution is fundamental in establishing potential future exploitation rates that further socio&#8208;economic developments may generate. This dissertation shows the scope of several approaches to describing this term in the water budget in range&#8208;and&#8208;basin areas in order to determine the availability of water resources therein, as a first essential step towards sustainability.
133

On multicomponent reactive transports in porous media: from the natural complexity to analitycal solutions

Donado Garzón, Leonardo David 05 October 2009 (has links)
El transporte de solutos no conservativos en medios porosos o fracturados es altamente influenciado por su heterogeneidad. Complejidad adicional se agrega al proceso de transporte, debido a la presencia de diferentes tipos de reacciones químicas que controlan la evolución de las concentraciones de las especies en el medio. Muchas de esas reacciones químicas están gobernadas por la mezcla de aguas con diferente calidad geoquímica. La mezcla produce desequilibrio químico instantáneo en el agua mezclada resultante, y las reacciones dan lugar para que se re-equilibre el sistema.Esta disertación doctoral estudia el transporte en medios heterogéneos cubriendo diferentes y tipos de acuíferos. Primero, el flujo y el transporte se analizan en rocas fracturadas, las cuales poseen baja permeabilidad. Estas formaciones son estudiadas usando como modelo conceptual las Redes Discretas de Fracturas, donde se considera el medio como una densa red de fracturas que se interconectan y conducen agua. Este modelo de es una alternativa válida para conceptualizar el transporte de solutos en el medio fracturado, pero tradicionalmente no se ha utilizado para analizar ni el transporte ni el flujo en una modelación de tipo problema inverso, debido a su alto costo computacional.El transporte de solutos conservativos en medios heterogéneos puede modelarse con una ecuación efectiva que involucre un término de transferencia de masa entre la zona móvil y la zona inmóvil. La segunda parte de la disertación explora la posibilidad de extender esta idea para tener en cuenta las especies reactivas. Se parte de la consideración de que las especies están en equilibrio químico local, el cual es alcanzado instantáneamente. El impacto de la heterogeneidad del medio en el transporte efectivo es representado por un modelo de tasa de transferencia múltiple de masa (MRMT), el cual aproxima el medio a un multicontinuo de una región móvil y varias regiones inmóviles, las cuales se relacionan por una transferencia de masa cinética. Partiendo del hecho de que todas las regiones están bien mezcladas, el equilibrio global no se preserva. Esta imposición implica que las reacciones tomen lugar en todo el dominio, y sean dominadas tanto por la dispersión local como por la transferencia de masa. Se derivaron expresiones explícitas para calcular las tasas de reacción en las regiones móvil e inmóvil y se estudió el impacto de la transferencia de masa en el transporte reactivo. Las tasas de reacción pueden cambiar significativamente comparadas con aquellas que se obtendrían en un medio homogéneo. Para una amplia distribución de tiempos de residencia en las zonas inmóviles, el sistema podría tomar mucho más tiempo para equilibrar globalmente el medio comparado que para un medio homogéneo.El último tema abordado en esta disertación es el análisis del transporte de especies bajo condiciones de cinética química o equilibrio no instantáneo. El transporte reactivo a escala local es analizado bajo dos situaciones: (i) con una reacción sencilla y (ii) con dos reacciones simultáneas: una considerada instantánea y la otra como lenta respecto al tiempo característico de transporte. En la primera situación de las dos planteadas, es posible concluir que el problema puede ser reescrito sólo en términos del estado inicial del sistema más una ecuación diferencial para la tasa de reacción. El resultado clave es que la tasa de reacción en equilibrio depende de un término relativo a la mezcla y a la reacción cinética, la cual es de hecho el factor que controla la disponibilidad de reactantes en el sistema, y la distribución de las combinaciones lineales de las concentraciones acuosas de las especies, llamadas componentes tanto conservativas como cinéticas. Desde un punto de vista operacional, estas expresiones permiten el cálculo directo de las tasas de reacción en equilibrio sin la necesidad de calcular las concentraciones de las especies acuosas. / Transport of non-conservative species or solutes in porous or fractured media is highly influenced by heterogeneity. Additional complexity is added to the processes due to the presence of different types of chemical reactions that control the fate of species concentrations in the medium. Many of these chemical reactions are governed by mixing of waters with different geochemical signature. Mixing yields instantaneous chemical disequilibrium in the resulting mixed water, and reactions take place to re-equilibrate the system.This dissertation studies transport in heterogeneous media covering different problems (flow, conservative transport and reactive transport) and in different aquifer types. First, we analyze flow and transport in low permeable highly fractured massifs. These are studied using the Discrete Fracture Network (DFN) approach, where a dense network of water-conducting intersecting fractures is considered. The DFN approach traditionally has lacked the possibility of analyzing transport (as well as flow) in an inverse problem framework. The actual tracer test, performed with a conservative solute (deuterium), evidences Non-Fickian behavior, characterized by tailing in the breakthrough curve.As a consequence, transport of conservative solutes in heterogeneous media can be modeled with an effective equation involving a mass transfer term between the mobile and some immobile zones. In the second part of the thesis we explore the possibility of extending this idea to account for transport of reactive species. We start by considering species where local chemical equilibrium conditions are reached instantaneously. The impact of the medium heterogeneity on effective transport is represented by a multi rate mass transfer approach, which models the medium as a multiple continuum of one mobile and multiple immobile regions, which are related by kinetic mass transfer. Even though all regions (mobile and immobile) are assumed to be well mixed (local equilibrium), globally equilibrium is not preserved. The imposition of local equilibrium at all points implies the need for reactions to take place all through the domain, driven by both local dispersion and mass transfer. We derive explicit expressions for the reaction rates in the mobile and immobile regions and study the impact of mass transfer on reactive transport. The reaction rates can change significantly compared with the ones that would be obtained in a homogeneous media. For a broad distribution of residence times in the immobile zones, the system may take much more time to equilibrate globally than for a homogeneous medium.The last topic addressed in this Thesis is the analysis of transport of species undergoing non-instantaneous (kinetic) chemical equilibrium. Reactive transport at the local scale is analyzed under two situations: (i) with a single kinetic reaction and (ii) with two simultaneous reactions: one considered instantaneous and the other one being slow related to the transport characteristic time. In the first problem of these problems, we find that the problem can be rewritten only in terms of the initial state of the system plus a non-linear partial differential equation for the reaction rate.The key result is that the equilibrium reaction rate depends on a mixingrelated term, the kinetic reaction rate, which is actually controlling the availability of reactants in the system, and the distribution of (conservative and kinetic) linear combinations of aqueous species concentrations. From an operational standpoint, our expressions allow direct computation of equilibrium reaction rates without the need to calculate aqueous species concentrations. To illustrate the results, the dissolution of calcite in the presence of precipitating gypsum in a one-dimensional fully saturated system is analyzed. The example highlights the highly nonlinear and non monotonic response of the system to the controlling input parameters.
134

Numerical Model of a Fossil Hydrothermal System in the Southern East Pacific Rise Exposed at Pito Deep

Björgúlfsson, Páll January 2012 (has links)
The Mid Ocean Ridge system with its volcanism and related hydrothermal activity has been a subject for many studies since the discovery of high temperature hydrothermal vents at the ridge surfaces in the 1970´s. This thesis focuses on deep sea hydrothermal activity on a superfast spreading ridge, the SouthernEast Pacific Rise (SEPR).The ridge is located in the South Pacific, off the coast of South America, and separates the Nazca Plate and the Pacific Plate. A fossil high temperature hydrothermal zone hosted by a fault was sampled 80 m below the lava/dike transition zone in the Pito Deep (a tectonic window intothe SEPR). Geochemical data from the fault zone indicates that cold (&lt;150°C)and hot (&lt;390°) fluids coexisted at the same time whilst the hydrothermal system was active. A numerical model (HYDROTHERM) developed by the USGS was used to recreate the geological settings in the SEPR in order to try to model the hydrothermal activity and fluid flow. The model solves two governingpartial differential equations numerically, the water component flow equation(Darcy law for flow in porous media) and the thermal energy transport equation(conservation of enthalpy for the water component and the porous media). The result of the modeling indicates that cold seawater can penetrate from the relatively permeable volcanic material into a highly permeable fault zone in the sheeted dike unit. The cooler seawater fluid flows down the fault zone,reheats and flows up again in a narrow upflow zone at the edge of the fracture/sheeted dike boundary. The result is a horizontal temperature gradient created in the fractured zone supporting the theory that hot and cold fluids can coexist in a fault hosted hydrothermal zone.
135

Hydraulic Tomography: Field and Laboratory Experiments

Berg, Steven January 2011 (has links)
Accurately characterizing the distribution of hydraulic parameters is critical for any site investigation, particularly those dealing with solute or contaminant transport. Despite the fact that many tools are currently available for both characterizing (e.g. soil core analysis, slug and pumping tests, direct push techniques, etc.,) and modeling (e.g. geostatistical interpolators, construction of geological models, etc.,) heterogeneous aquifers, this still remains a challenge. In this thesis, hydraulic tomography (HT), a recently developed tool for characterizing and modeling heterogeneous aquifers is evaluated under both laboratory and field conditions. To date, both steady state hydraulic tomography (SSHT) and transient hydraulic tomography (THT) have been demonstrated at the laboratory scale, however, only SSHT has been rigorously validated through the prediction of independent tests (those not used for estimating the distribution of hydraulic parameters), and comparison to other characterization/modeling techniques. Additionally, laboratory and field validations of HT using comparisons other than the prediction of independent pumping tests (e.g. prediction of solute transport) are lacking. The laboratory studies performed in this thesis address some of these gaps by: i) rigorously validating THT through the prediction of independent pumping tests, and comparison to other characterization techniques; ii) using HT estimated parameter distributions to predict the migration of a conservative tracer in a heterogeneous sandbox aquifer; and, iii) predicting the flow of water to a well in a heterogeneous, unconfined, sandbox aquifer. For all three cases, HT was compared to more traditional characterization/modeling approaches, such as; the calculation of homogeneous effective parameters, kriging of point data, or the creation and calibration of a geological model. For each study the performance of HT was superior to the other characterization methods. These laboratory experiments demonstrated both the ability of HT to map aquifer heterogeneity, and the critical need for accurately understanding heterogeneity in order to make accurate predictions about a system. In this regard, HT is a powerful tool at the laboratory scale where the forcing functions (i.e., boundary conditions, flow rates, etc.,) are accurately known. While several field scale HT studies have been reported in the literature, none attempt to validate 3D THT through the prediction of independent pumping tests, or through comparison to known geology. The application of THT at the field scale presents unique challenges not faced in the laboratory setting. For example, boundary conditions are not accurately known and it is not possible to instrument a field site as densely as a sandbox aquifer. In the field studies conducted as part of this thesis, THT was validated by comparing estimated hydraulic parameter fields to known geology (borehole data) and simulating 9 pumping tests that were performed at the site. The THT analysis was able to capture the salient features of the aquifer (the presence of a double aquifer separated by an aquitard), and was able to reasonably reproduce most of the pumping tests. For comparison purposes, a homogeneous model and three additional heterogeneous models were created: i) permeameter estimates of hydraulic conductivity from soil cores were interpolated via kriging; ii) the transition probability/Markov Chain approach was used to interpret material classifications from borehole logs; and iii) a stratigraphic model was created and calibrated to pumping test data. Of these cases, THT and the calibrated stratigraphic model performed best, with THT performing slightly better. This work indicates that it is possible to interpret multiple pumping tests using hydraulic tomography to estimate the 3D distribution of hydraulic parameters in heterogeneous aquifer systems. Also, since hydraulic tomography does not require the collection and analysis of a large number of point samples, it is likely comparable in cost to other characterization/modeling approaches.
136

Karst hydrogeology and speleogenesis of Sistema Zactón, Tamaulipas, Mexico

Gary, Marcus Orton 06 November 2012 (has links)
Understanding geologic mechanisms that form karst is of global interest. An estimated 25% of the world's population obtains water from karst aquifers and numerous major petroleum reserves are found in paleokarst reservoirs, so characterization and classification of specific types of karst is essential for resource management. Sistema Zacatón, which includes the second deepest underwater cave in the world, is hypothesized to have formed from volcanogenic karstification, defined as a process that relies on four components to initiate and develop deep, subsurface voids: a carbonate matrix, preferential groundwater flowpaths (fractures), volcanic activity that increases groundwater acidity, and groundwater flux through the system. Phases of karstification creating this modern hydrogeological environment are defined using numerous methods: field mapping, 3-D imaging of surface and aqueous environments, geophysical investigations, physical and chemical hydrogeologic characterization, and microbial analysis. Interpretation of the results yields a multi-phased speleogenetic model of the karst, with most phases occurring in the late Pleistocene. The surface rocks are carbonate travertine with Pleistocene mammoth fossils found within the rock matrix, and are interpreted as a hydrothermal travertine terrace formed as nearby volcanic activity peaked, thus representing the end member of a carbonate mass transfer system originating deep in the subsurface. The modern karst system includes a dynamic set of deep, phreatic sinkholes, also called cenotes, which propagated up through the travertine, eventually exposing hydrothermal water supersaturated with carbon dioxide to the atmosphere. In some cases these cenotes have precipitated seals of a second stage of travertine as CO₂ degassed, capping the sinkhole with a hydrologic barrier of travertine. Evidence of these barriers is observed in aqueous physical and geochemical characteristics of the cenotes, as some have high hydrologic gradients and contrasting geochemistry to those of neighboring cenotes. Investigations of electrical resistivity geophysics and underwater sonar mapping support the hypothesis of the barriers and define the morphology in intermediate and final phases of sinkhole sealing. Volcanogenic karstification is not limited to Sistema Zacatón, although the localized nature coupled with rapid and extreme degrees of karstification makes it an ideal modern analogue for classifying other karst systems as volcanogenic. / text
137

Geochemical methods for evaluating the origin and evolution of ground water in volcanic rocks

Veeger, Anne Isabella,1961. January 1991 (has links)
A broad-based geochemical approach, including chemical and isotopic analyses of ground water, chemical analysis of aquifer materials, and laboratory water-rock experiments, was used to evaluate the origin and chemical evolution of ground water on La Palma, a volcanic island in the Canary Archipelago. Stable isotopes of oxygen, hydrogen, carbon and sulfur were successfully used to delineate recharge zones and identify solute sources. Laboratory study of water-rock interactions established the source of solutes and the nature of the chemical reactions that control ground-water chemistry. Most ground water on La Palma originates in a recharge zone that encircles the island from 500 to 1800 meters above sea level. Dry fallout and seaspray are minor sources of solutes, however, evaporative concentration during recharge may produce elevated chloride levels in some portions of the island. Laboratory water-rock experiments and ground-water analyses indicate that incongruent dissolution of aluminosilicate minerals is the dominant process of solute acquisition. The geochemical evolution of most waters is controlled by the availability of dissolved carbon dioxide gas. However, oxidation of pyrite enhances the reactivity of ground water in some portions of the island. Waters in the early phases of chemical evolution appear to be in equilibrium with a kaolinite alteration product, whereas more mineralized waters have compositions consistent with smectite equilibrium. Zones or compartments of ground-water flow were delineated by classifying sampling sites into geochemically distinct groups. Eight distinct zones of ground-water flow were identified using these criteria, including superimposed but hydrologically separate flow paths.
138

The hydrogeologic framework of the Roswell groundwater basin, Chaves, Eddy, Lincoln, and Otero Counties, New Mexico

Havenor, Kay Charles,1931- January 1996 (has links)
Aquifers of the Roswell groundwater basin are unconfined and confined types in Permian San Andres Formation and Artesia Group carbonates and evaporites, and the shallow unconfined Quaternary sedimentary and alluvial aquifer. The carbonate-evaporite aquifers were developed from solution by meteoric water, groundwater, the Pecos River, and its tributaries. The structural geology of the region includes Cenozoic folding and wrench faulting. Regional dextral strike-slip faults, <30 Ma to as young as 0.5 Ma, dominate the hydrogeologic framework of the groundwater basin. The faults created major lithologic and structural boundaries for the groundwater systems developed between them. The Roswell groundwater "basin" is actually a series of en echelon structural blocks with aquifers developed in erosion-beveled, fault-displaced Permian carbonates and evaporites partly covered by Quaternary sedimentary rocks and alluvium. The confined portions of the carbonate aquifers are in the San Andres Formation, the Artesia Group, or a solutional-karstic melange of the two. The Permian aquifers developed within each structural block exhibit different hydrochemical and hydrologic properties. The rock groups produce distinctive bulk element water chemistry signatures which are readily visible on ternary plots, Piper diagrams, and Fingerprint diagrams. San Andres Formation waters have high HCO₃⁻, intermediate SO₄²⁻ , and low Cl⁻ that demonstrate a preponderance of carbonates with some evaporites. Waters hosted by the Artesia Group are characterized by low HCO₃⁻, high SO₄²⁻ , and high Cl⁻that reflect evaporites with some carbonates. Quaternary alluvial aquifer waters show low Ca²⁺, low HCO₃⁻, with moderately high SO₄²⁻- and Cl⁻. Normative mineral reconstructions identify the lithologic combinations through which the waters flowed to acquire their present chemical characteristics. Plotted as charts the normative mineral reconstructions can be correlated as are electric well logs. Mineral stability diagrams support exchange by sodium liberation and calcium replacement in Na-smectite marine clays for altering the Ca⁺ - Na⁴ groundwater chemistry. Hydrochemical plots provide a robust means of identifying aquifer sources of groundwater and delineating their structural and stratigraphic boundaries. The work should be expanded to include more water analyses from each group, and as a means to identify unknows, such as the sources of water to the Pecos River.
139

Περιβαλλοντική υδρογεωλογική έρευνα των υδροφόρων οριζόντων της ευρύτερης περιοχής του δήμου Αμαλιάδας

Κουλούρη, Αθανασία 01 October 2008 (has links)
- / -
140

Watershed Modeling by Remote Sensing and AGWA - SWAT for Western Portion of Cusco Watershed - Peru

Pumayalli, Rene January 2008 (has links)
Erosion and flooding in the Cusco watershed have increased over the last 30 years due to urban growth and incorrect use of natural resources. New data for a section of the watershed were created with satellite image, spatial data, and geoprocessing software including Erdas Imagine 9.1 and ArcInfo and free information and software in the public domain on the internet. AGWA2.0 - SWAT modeling software used the data to assess the actual conditions of the study area (Model 1) including sediment yield, water yield, percolation, and stream flow. Then, two models were created by altering the conditions of the land cover/use grid: Model 2 changed the bare soil class into contour trenches, and Model 3 changed bare soil class into trees or forest. A comparison of Models 2 and 3 with the current state (Model 1) found that forestation, Model 3, would greatly decrease flooding and increase water infiltration.

Page generated in 0.1676 seconds