• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 28
  • 14
  • 8
  • 7
  • 7
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 223
  • 50
  • 46
  • 44
  • 39
  • 39
  • 34
  • 27
  • 26
  • 23
  • 22
  • 22
  • 20
  • 19
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Enzymatic and applied studies on microbial hydrolases acting on carbon-nitrogen bonds for pharmaceutical intermediates production / 炭素-窒素結合に作用する微生物加水分解酵素の解析と医薬品中間体生産への応用

Mitsukawa, Yuuki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20451号 / 農博第2236号 / 新制||農||1051(附属図書館) / 学位論文||H29||N5072(農学部図書室) / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 小川 順, 教授 三上 文三, 教授 栗原 達夫 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
142

Enrichment of lignocellulosedegrading microorganisms byiterative culturing / Anrikning av lignocellulosanedbrytande mikroorganismer genom iterativ kultivering

Rosenholm, Angelica January 2016 (has links)
No description available.
143

Biological And Chemical Assessment Of Glycine Max Modified With Gm-Xth52 Gene Resistant To Attack Of Nematode Heterodera Glycines

Khan, Ismail 06 May 2017 (has links)
Soybean (Glycine max) yield is significantly affected by soybean cyst nematode (SCN), Heterodera glycines, and causes an annual loss of billions of US dollars. In this study, Glycine max xyloglucan endotransglycosylase/hydrolase gene (Gm-XTH52) was transformed into a nematode susceptible G. max [Williams 82/PI 518671] variety of soybean to test whether the protein expression has a role in resistance to H. glycines, and possible chemical changes the expression may cause in the plant composition. Expression level of the Gm-XTH52 gene was three times higher than in controls. Significant reduction in the number of SCN cysts suggested suppression of H. glycines parasitism upon transformation. While total sugar amounts did not significantly differ between the transformed and control plants, xyloglucan amounts of loosely bound sugars of genetically mosaic plants were significantly lower in comparison to controls. Control plants showed lower molecular weight sugars than the transformed plants not subjected to H. glycines infection.
144

Synthesis of Chemical Models of Hydrolase Enzymes for Intramolecular Catalysis.

Ndi, Cornelius Ndi 17 December 2011 (has links) (PDF)
Most nuclease enzymes can hydrolyze phosphoester bonds (in DNA and RNA) by using metal ions cofactors that coordinate and activate water molecules in the enzymes' active sites. However, there are some hydrolase enzymes (including nucleases) that can function without the aid of metal ions. 2,6-Di(1H-imidazol-2-yl)phenol, a model compound for hydrolase enzyme, was synthesized by the reaction between ethylenediamine and dimethyl-3-carboxysalicylate, initially resulting in the formation of diimidazoline. The diimidazoline was subsequently aromatized to the diimidazole by dehydrogenation over palladium. The overall reaction yield was low; therefore, other dehydrogenation transformation reactions were tried but all failed to improve the yield. Converting this diimidazolphenol into diimidazolphenyl monophoshpate derivative was attempted but failed to give desired products. Synthesis of 2,2'-anthracene-1,8-diylbis-1H-imidazole, another model compound for hydrolase enzymes, was attempted using dimethyl-1,8-anthracenedicarboxylate, but synthesis was unsuccessful due to solubility problem.
145

Mechanisms of Prenatal High-Salt "Fetal Programming" Resulting in Stress Hyperresponsiveness in The Adult Female Offspring in The Sprague Dawley Rat.

Johnson, Clinton L. 08 August 2011 (has links) (PDF)
Female offspring of Sprague-Dawley rats fed a high-salt diet (HS) during pregnancy show an enhancement of mean arterial pressure (MAP) and heart rate (HR) response to acute stress in adulthood compared to offspring whose mothers were fed a normal-salt diet (NS) [1]. In the present study, we first examined the expression of soluble epoxide hydrolase (SEH) protein in brain tissue. Whole brains were collected and SEH gene (EPHX2) mRNA and SEH protein expression were analyzed using RT-PCR and Western blot, respectively. mRNA levels were relatively decreased in high-salt rats (1.0 ± 0.32 NS vs 0.39 ± 0.07 HS, n=6). However, the relative expression of SEH protein was significantly increased in HS rats (0.97 ± 0.06 NS vs. 1.72 ± 0.32 HS, n=10). SEH is an enzyme that inactivates epoxyeicosatrienoic acids (EETs), which can increase the level of oxygen free radical production and potentially produce an increase in blood pressure. Tempol, a free radical scavenger, was administered ntracerebroventricularly to HS (n=12) and NS (n=11) offspring to determine if the stressinduces cardiovascular hyperresponsiveness could be reversed. We were unable to conclusively show that this was the case. Hence, the expression of SEH protein in the brains of HS offspring was increased, but a role, if any, for this change in explaining the exaggerated response to acute stress remains elusive. Second, the expression of the glucocorticoid receptor (GR) gene was investigated. We focused on the methylation patterns of the exon 17 GR promoter and 17 CpG dinucleotide sites that include the NGFI-A transcription factor binding site. Female rats (HS n=8, NS n=8) were sacrificed and brains were immediately extracted. Tissue from the pituitary, hypothalamus, and hippocampus was removed and DNA was extracted from each of these areas. CT conversion was performed on the DNA samples followed by cloning and sequencing. Methylation patterns between HS and NS in the pituitary, hypothalamus, and hippocampus did not vary. RT-PCR and Western blot were performed to investigate differences in the levels of GR transcription and/or translation. There were no significant differences found. However, the trends found may suggest different levels of GR mRNA and protein between HS and NS female rats. DNA methylation may play a role in the regulation of GR in prenatal high-salt female offspring. Additional studies will be needed to pinpoint the mechanisms responsible for the exaggerated cardiovascular response to acute stress in HS offspring.
146

Synthesis of new inhibitors of human homogentisate 1,2-dioxygenase, one of the enzymes, involved in tyrosine metabolic pathway in humans

Sinelnikova, Natalia 11 April 2018 (has links)
La tyrosinémie héréditaire de type I (TH I) est une maladie génétique. Elle est causée par une activité réduite de la fumarylacétoacétate hydrolase (FAH), la dernière enzyme impliquée dans la dégradation de la tyrosine chez l'humain. Cette déficience enzymatique cause l'accumulation de produits toxiques dans l'organisme, ce qui occasionne de graves problèmes de foie et une issue fatale dans l'enfance. La tyrosinémie héréditaire est une maladie rare. L'incidence de cette maladie dans le monde est une personne sur 120 000 naissances vivantes. Par contre, dans les régions du Saguenay Lac Saint-Jean et de Charlevoix l'incidence de cette maladie est très élevée : une personne sur 1846 nouveau-nés. Le but de ce projet est la synthèse des inhibiteurs de l'homogentisate 1,2- dioxygénase (HGO), la troisième enzyme, impliquée dans la dégradation de la tyrosine. Ces inhibiteurs représentent les analogues halogènes de l'acide homogentisique qui est le substrat de l'HGO. L'utilisation de ces inhibiteurs dans le traitement de la tyrosinémie héréditaire de type I peut devenir une bonne alternative de la transplantation hépatique qui représente, en ce moment, la méthode la plus efficace pour traiter cette maladie. / Hereditary tyrosinemia type (HT I) is the most severe genetic disease in human tyrosine catabolism, affecting liver, kidney and peripheral nerves. It results from reduced activity of fumarylacetoacetate hydrolase (FAH), the final enzyme in the degradation of tyrosine. The accumulation of toxic metabolites in liver leads to progressive liver malfunction and cirrhosis which leads to the fatal outcome in infancy. Despite the fact that tyrosinemia type I is a rare genetic disease (the Worldwide prevalence is 1 case to 120 000 newborns), in Saguenay Lac Saint-Jean and Charlevoix regions of Québec the prevalence of tyrosinemia type I is very high, one case to 1846 newborns. The object of this project is the synthesis of inhibitors of the homogentisate 1,2- dioxygenase (HGO), the third enzyme in the catabolic tyrosine pathway in human. These inhibitors represent the halogenated analogues of homogentisic acid, which is a substrate of HGO. Treatment of HT I using these inhibitors may be a very good alternative to the orthotopic liver transplantation (OLT) which is now the only effective form of therapy of this disease.
147

MICROBIAL GLYCOSIDE HYDROLASE MEDIATED MODIFICATION OF HOST CELL SURFACE GLYCANS

Pasupathi, Aarthi January 2023 (has links)
All cells and extracellular matrices of prokaryotes and eukaryotes are made up of glycans, the carbohydrate macromolecules that play a predominant role in cell-to-cell interaction, protection, stabilization, and barrier functions. Glycans are also central to human microbiome-host interactions where bacterial glycans are recognized by innate immune signaling pathways, and host mucins are a major nutrient source for various gut bacteria. Many microorganisms encode glycoside hydrolases (GHs) to utilize the available host cell surface glycans as a nutrient source and to modulate host protein function. The GHs are divided into families having conserved linkage specificity within each family and individual family members can be specific for dramatically divergent macromolecular substrates. In general, within a given GH family very few members have been biochemically characterized and the substrate specificity is poorly understood. GH genes are abundant in the human gut microbiome and culture-enriched metagenomics identified more than 10,000 distinct bacterial GH genes in an individual. The focus of this thesis is endo-β-N-acetylglucosaminidases (ENGases) encoded by GH18 and GH85 families. Bioinformatic analysis shows that the predicted proteins within each of these GH families fell into separate clusters in the Sequence Similarity Networks of each family. The hypothesis of this project is that human microbiome-encoded ENGases from the same GH family differ in their substrate specificities and within the SSN network of the same GH family, enzymes with similar substrate specificity may fall in the same cluster. In this work, I established conditions for overexpression of GH18 and GH85 proteins and investigated the activity of these enzymes on various substrates. / Thesis / Master of Science (MSc) / All the cell surfaces of animals, plants, and microbes are coated with sugars, also known as glycans. These sugars on the cell surface act as a barrier and protect them from the external environment. Glycans on the cells of both microbes and humans are essential for basic interactions between them. Many bacteria produce enzymes such as glycoside hydrolases to obtain nutrients from dietary sugars and alter the sugars on host proteins. There are various families of these enzymes, and they act on specific sugars and cleavage sites. The substrate specificities and characterization of these enzymes from most bacteria found in the human microbiome have not been studied in detail. My work focuses on developing standard enzyme assays for determining specific substrate specificities. This tool can be used to reshape glycans and understand their role in cell processes.
148

Biochemical characterizations and food applications of carbohydrate active enzymes secreted from microorganisms / 微生物が分泌する糖質関連酵素の生化学的解析と産業利用

Sakai, Kiyota 24 July 2023 (has links)
京都大学 / 新制・論文博士 / 博士(農学) / 乙第13567号 / 論農博第2913号 / 新制||農||1101(附属図書館) / (主査)教授 小川, 順, 教授 阪井, 康能, 教授 栗原, 達夫 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
149

Valine Metabolism in Arabidopsis

Lucas, Kerry A. 27 May 2008 (has links)
No description available.
150

Examining Virus Interactions with Host Serine Hydrolases in Immunometabolism

Stern, Tiffany 12 January 2024 (has links)
As obligatory intracellular parasites, viruses are in a constant battle with their host to establish infection. They can facilitate their propagation by modulating host immune or metabolic pathways. This modulation involves targeting various molecular factors such as microRNAs (miRNA), enzymes, or small molecules. Understanding how viruses alter the chemical makeup of a cell is crucial to identifying what pathways are being targeted, furthering our understanding of the virus life cycle, and may aid in identifying biomarkers of disease. Here, we examine host-virus interactions in the context of two viruses, hepatitis c virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First, the modulation of serine hydrolases by a pro-viral microRNA, miRNA-122, is investigated using activity-based protein profiling (ABPP). This study identifies a downstream target of miRNA-122 that is differentially activated during HCV infection which can be targeted pharmacologically to reduce HCV infectivity. Second, we apply similar techniques to identify serine hydrolase changes associated with SARS-CoV-2 infection. Results point towards enrichment of endocannabinoid metabolism which may offer an alternative therapeutic avenue for combating SARS-CoV-2 infection. Together, the work presented in this thesis provides avenues for further investigation into miRNA-122 interactions during HCV infection and endocannabinoid metabolism in SARS-CoV-2 infection.

Page generated in 0.0415 seconds