• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation numérique de parcs d'hydroliennes à axe vertical carénées par une approche de type cylindre actif / Numerical simulation of arrays of ducted vertical-axis water turbines using an active cylinder approach

Dominguez Bermudez, Favio Enrique 13 July 2016 (has links)
La récupération, grâce aux hydroliennes, de l’énergie cinétique de courants marins et fluviaux constitue une source d’énergie renouvelable considérable et prédictible. La simulation fine, par une description statistique instationnaire de type URANS, de l’écoulement autour d’une hydrolienne isolée à axe vertical, bi-rotor et munie d’un carénage (hydrolienne de type HARVEST) donne accès à une estimation précise de la puissance produite. Cependant, le coût élevé de cette approche URANS la rend inadaptée à la simulation d’un parc de machines. Une analyse de la littérature conduit à retenir un modèle basse-fidélité de type Blade Element Momentum (BEM) pour décrire à moindre coût l’effet du rotor de la turbine sur l’écoulement, dans le contexte d’une description 2D (coupe horizontale). La performance de l’hydrolienne est alors prédite par un calcul RANS incluant des termes sources distribués dans un anneau rotor virtuel et conservant le maillage des parties fixes (carénage). Ces termes sources sont construits grâce à une procédure originale exploitant les conditions locales de l’écoulement en amont des cellules du rotor virtuel et le débit de l’écoulement traversant l’hydrolienne. Les coefficients hydrodynamiques utilisés pour le calcul des termes sources BEM-RANS sont construits une fois pour toutes en exploitant une série de simulations URANS préliminaires ; ils intègrent les effets du carénage et le fonctionnement de chaque rotor à une vitesse de rotation optimale (maximisant la puissance produite) grâce au système de régulation de l’hydrolienne. Le modèle BEM-RANS développé est validé par comparaison avec des simulations URANS de référence : il fournit une estimation fiable de la puissance produite (erreur de quelques % par rapport à l’approche URANS) pour un coût réduit de plusieurs ordres de grandeur. Ce modèle est appliqué à l'analyse de la puissance produite par une rangée d’hydroliennes HARVEST dans un canal pour différents facteurs de blocage et d’espacement latéral ainsi qu’à une ferme marine composée de trois hydroliennes. / The capture, thanks to hydrokinetic turbines, of the kinetic energy generated by sea and river currents provides a significant and predictable source of renewable energy. The detailed simulation, using an unsteady statistical description of URANS type, of the flow around an isolated water turbine of HARVEST type (cross flow vertical axis ducted water turbine) provides an accurate estimate of the power output. However, the cost of the URANS approach is much too expensive to be applied to a farm of several turbines. A review of the literature leads to select a low-fidelity model of Blade Element Momentum (BEM) type to describe at a reduced cost the rotor effect on the flow, in a 2D context (horizontal cross-section). The turbine performance is then predicted using a steady RANS simulation including source terms distributed within a virtual rotor ring and preserving the mesh of the turbine fixed parts (duct). These source terms are derived using an original procedure which exploits both the local flow conditions upstream of the virtual rotor cells and the flow rate through the turbine. The hydrodynamic coefficients used to compute the BEM-RANS source terms are built once for all from a series of preliminary URANS simulations; they include the effects of the duct on the flow and the rotor operating at optimal rotational speed (maximizing the power output) thanks to the turbine regulation system. The BEM-RANS model is validated against reference URANS simulations: it provides a reliable prediction for the power output (within a few % of the URANS results) at a computational cost which is lowered by several orders of magnitude. This model is applied to the analysis of the power produced by a row of Vertical Axis Water Turbines in a channel for various values of the blockage ratio and lateral spacing as well as to a 3-machine sea farm.
2

Etude des tuyères composites pour une conception optimale d'une hydrolienne à axe horizontal / Study of composites ducts for optimal design of an horizontal axis tidal turbine

Ait Mohammed, Mahrez 13 January 2017 (has links)
La raréfaction des ressources fossiles non renouvelables et le dérèglement climatique font de la question énergétique un enjeu d’envergure mondiale. L’exploitation de nouvelles sources d’énergie renouvelable devient alors un objectif de première importance. L’énergie produite à partir des courants marins suscite depuis quelques années un intérêt particulier. Le concept de turbine sous-marine, appelée hydrolienne, désigne le dispositif permettant de convertir l’énergie cinétique des courants marins en énergie électrique. Ce travail de recherche traite les problématiques que pose la conception des hydroliennes à axe horizontal. Il sera mis en évidence que le monde des hélices marines présente une piste intéressante pour l’étude du comportement hydrodynamique des hydroliennes. Certains concepteurs d’hydroliennes avancent que l’ajout d’un système de carénage est favorable pour améliorer le rendement hydrodynamique. L’étude du gain hydrodynamique à encombrement constant que pourrait procurer l’ajout d’un carénage a donc été choisie comme point de départ de ce travail de recherche. Pour répondre au besoin des industriels lié à une problématique de gain de masse, les matériaux composites présentent un atout considérable en raison de leurs excellents rapports «masse/résistance» et «masse/rigidité». Une réalisation d’un carénage en matériaux composites présentant le meilleur ratio «puissance/masse» a été obtenue. Un carénage d’hydrolienne est de par sa position particulièrement confronté à des chocs. Ceci peut s’avérer très délicat car la structure composite en question est soumise à des sollicitations sévères liées à l’environnement marin. L’impact sur un carénage d’hydrolienne a été traité en détail dans ce travail de recherche. / Against the backdrop of the increasing scarcity of non-renewable fossil resources and climate change, the energy problem has become a worldwide issue. Hence, the exploitation of new renewable energy sources becomes a worldwide goal of primary importance. The concept of the underwater turbine, called tidal current turbine, designates the device which allows the conversion of the kinetic energy produced by marine currents in electric energy. This research study examines the problems related to the design of horizontal axis tidal current turbines. The present study shows that the world of marine propellers, sometimes entirely left out by the designers of tidal current turbines, presents an interesting avenue of research with regard to the hydrodynamic behaviour of tidal current turbines. Certain designers of tidal current turbines use a duct and hold that the addition of the duct contributes to the improvement of the hydrodynamic performance. Therefore, the study of the hydrodynamic benefits of ducted turbine using a constant overall cross-section than the bare turbine was the starting point of the present research work. In order to meet the needs of the manufacturers of tidal current turbines, which is generally linked to a problem of mass gain, composite materials present a considerable asset on account of their excellent «mass/resistance» and «mass/rigidity» relations. A structural design of ducted tidal current turbines using composite materials has therefore been examined. Hence, the design of a composite duct which yields the best «power/mass» ratio has been proposed. The duct of the tidal current turbine is especially confronted by the impacts due to its particular position. The impact damage aspect has also been examined in detail in the present research study.

Page generated in 0.0575 seconds