• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 8
  • Tagged with
  • 223
  • 223
  • 97
  • 78
  • 75
  • 75
  • 71
  • 68
  • 50
  • 41
  • 28
  • 27
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Exploring the Ecohydrological Impacts of Woody Plant Encroachment in Paired Watersheds of the Sonoran Desert, Arizona

January 2013 (has links)
abstract: Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2013
152

Improving Climate Projections Through the Assessment of Model Uncertainty and Bias in the Global Water Cycle

January 2013 (has links)
abstract: The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2013
153

The Shift of Precipitation Maxima on the Annual Maximum Series using Regional Climate Model Precipitation Data

January 2013 (has links)
abstract: Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2013
154

Interception in Open-grown Douglas-fir (Pseudotsuga menziesii) Urban Canopy

Bixby, Mitchell 01 January 2011 (has links)
I hypothesized that Douglas-fir trees (Pseudotsuga menziesii) standing apart from other trees ('open-grown') will intercept more rainfall than Douglas-fir trees standing near other trees ('closed-canopy'). Open-grown trees differ structurally and are more common in urban settings, yet have been infrequently studied. Existing literature, based primarily on closed-canopy trees, suggests Douglas-fir trees in Pacific Northwest forests intercept approximately 25% of rainfall annually. Because open-grown trees have more vertical leaf area than individual trees in closed-canopy forests, I expected to find higher interception by open-grown trees. I collected throughfall under four open-grown Douglas-firs using six static collectors ('buckets') per tree, and two closed-canopy Douglas-firs using six buckets per tree. I compared their throughfall to the incident rainfall in two adjacent open-field buckets. Gross interception was measured in 53 collections during rainy weather from 16Nov07 to 31Mar08. Over the same period, rainfall per hour, wind speed, gust speed, wind direction, temperature and relative humidity were collected at a weather station located within 1 km of the site. For comparison, average hourly rainfall at Portland International Airport from 1950 to 2005, for the same months of the collection period, showed a comparable number of medium- to high-intensity storms, but more low-intensity storms. I found that incident rainfall for the adjacent open-field buckets totaled 65.6cm and 71.6cm over the study period. Interception values for closed-canopy trees averaged 26%, corresponding to the literature, with results of 22 and 30%. Interception values for open-grown trees averaged 31%, with results ranging from 15 to 45%. Three of the 24 buckets returned overall negative interception rates over five months. Given the lower storm intensity of 2007-08, interception rates may be somewhat high, compared to the historical average. The negative interception rates at three buckets were likely due to their locations under high drip points, as has been observed in other studies. Considering the wide range of canopy architecture among open-grown trees, the high variability in interception was not surprising. My hypothesis was supported by the data, but requires more testing to better generalize these results. Future studies that link open grown tree canopy morphological characteristics to interception are warranted.
155

Investigating the Temporal and Spatial Variability of Flow and Salinity Levels in an Ungaged Watershed for Ecological Benefits:A Case Study of the Mentor Marsh Watershed

Dhungel, Hari 24 July 2018 (has links)
No description available.
156

Hydrogeochemical Factors Influencing Metal Transport and Transformation in a Stream Impaired by Acid Mine Drainage

Yazbek, Lindsey Danese 30 July 2019 (has links)
No description available.
157

Hydrogeochemical Characterization of Acid-Mine Drainage, Ohio Valley Mushroom Farm Site in North Lima, Ohio

McQuade, Theresa Lynn 18 December 2012 (has links)
No description available.
158

An integrated field and modeling study of the transport of cyanotoxin from Lake Erie to coastal aquifers

Cobbinah, Emmanuel 23 August 2022 (has links)
No description available.
159

Modeling and Understanding Complexities Associated With Variable-Density Flow in Experimental Groundwater Systems

Goeller, Devon Raymond 23 August 2022 (has links)
No description available.
160

EVALUATION OF POTENTIAL 10 MGD GROUNDWATER SUPPLY FROM AQUIFERS IN GEAUGA COUNTY, OHIO

Alzahrani, Abdulaziz S. 03 August 2022 (has links)
No description available.

Page generated in 0.052 seconds