• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis and characterization of binary and ternary hydrotalcites-like compounds for the hydroxylation of phenol

Muthwa, Sindisiwe Fortunate January 2017 (has links)
Submitted in fulfilment of the academic requirements for the Degree of Master's in Chemistry, Durban University of Technology, 2017. / Hydrotalcites (HT) and hydrotalcites-like (HTLc) compounds were synthesized by the co-precipitation method under low supersaturation. The synthesized binary Mg-Al hydrotalcites and ternary Cu/Mg-Al hydrotalcite-like compounds were characterized by various physico-chemical techniques such as inductively coupled plasma-optical emission spectroscopy (ICP-OES), powder X-ray diffraction (XRD), Fourier transform- infrared spectroscopy (FT-IR), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and BET surface area analysis. Elemental composition generated from ICP-OES data revealed a value of x in the region of 0.25 to 0.33 for all the compounds except for the MgAl-11 sample which revealed an x value of 0.5 while XRD patterns exhibited characteristic features indicative of an ordered layered material. FT-IR spectra confirmed the presence of characteristic functional groups and interlayer anions. Only Cu2+ which has a d9 configuration was accountable for the bands identified in UV-VIS spectra, whereas both Mg and Al with their d0 electron configurations showed no absorptive bands in the UV-VIS spectra. During thermal treatment by TGA, typical weight loss of Cu-Mg/Al HTLcs with temperature elevation was observed. The SEM images clearly demonstrated that all the Cu-Mg/Al HTLcs retained their characteristically layered structure morphologies. The BET surface area measurements showed no trend, however the surface area decreased with an increase in the copper concentration in some cases. For the heterogeneous hydroxylation of phenol using H2O2 as an oxidant, several reaction parameters such as solvent systems, catalyst amount, temperature, substrate/oxidant ratio, time and solvent volume were investigated. The product stream, monitored by gas chromatography showed that catechol (CAT) and hydroquinone (HQ) were the main products. Non-catalytic (blank) experiments were investigated to determine whether the reactants and the internal standard contributes to the conversion of phenol without the use of a catalyst. All blank reactions showed very low phenol conversions which were less than 1%, whereas the Mg/Al HTs showed low phenol conversions as well. All the Cu-Mg/Al catalysts showed measurable phenol conversion with Cu-Mg/Al-51a giving the highest conversion of 29.9% and a 56 and 44% selectivity towards CAT and HQ, respectively. The Cu-Mg/Al-15b catalyst, which had the lowest copper concentration, showed the lowest phenol conversion of 8.3% with a 55 % CAT selectivity and 45% HQ selectivity. In general, the phenol conversion increased with an increase in copper concentration. This reinforced the hypothesis that copper was the active centre in this reaction, since no measurable conversion was observed with Mg/Al HTs. / M
22

Model systems for biological hydroxylation

Lindsay Smith, J. R. January 1964 (has links)
No description available.
23

Relationships between crystal structure, bonding and thermal stability of amphiboles

Chyi, Kwo-Ling January 1987 (has links)
The complexities in structure and chemical composition of the amphiboles and the wide range of their occurrence suggest that the amphiboles are potential index minerals for the physical conditions of their formation. Hydrothermal stability studies of several amphibole endmembers have demonstrated that the FeMg₋₁ substitution produces a wide spread in thermal stability. The crystal structure, upon substitution, responds to the differences in cation size and site occupancy, but the changes are small. In order to correlate the observed stability variation with the observed differences in crystal structure of amphiboles, structure parameters as well as calculated bond strengths, Madelung site energies, and average bond overlap populations obtained from Extended Hückel Molecular Orbital (EHMO) calculation for different cation sites, were examined. Among the examined structural parameters, calculated Madelung site potentials, and bond strength, only the parameters involving bonds between the M(1)- and M(3)-cations with OH show higher correlations with the thermal stability as compared to those of the M(2)- and M(4)-cations. This reflects the dehydration nature of the amphibole break-down reaction, since the OH bonding with seems important in controlling the thermal stability. Infrared absorption spectra of amphiboles show the fine structure of the hydroxyl group. The frequency of the absorption band is related directly to the strength of the OH bond. Positive correlations exist between thermal stability and OH-stretching frequency for different amphibole end-members at different temperatures. For epidote minerals, as well as for muscovite and phlogopite, high OH-stretching frequencies also correlated with the minerals having higher thermal stability. These correlations indicate that the thermal stability of many hydrous minerals may be significantly related to the localized force field around the OH bond. The crystal structure of grunerite Klein No. 9A has been refined and compared with grunerite Klein No. 1 (Finger, 1969) and cummingtonite (Ghose, 1961; Fisher, 1966). The results show that the substitution of Fe for Mg into the cummingtonite-grunerite structure not only enlarges the octahedral layer but also affects the size of the T(1) and T(2) tetrahedra and thus increases strain on the octahedral and tetrahedral linkage. The high thermal expansion of the octahedral layer and the negligible effect of heating on the tetrahedral layer substantially increase the strain on the structure. This may also explain why the Fe-rich end member decomposes at a lower temperature than its Mg-analogue, the structure of which can accommodate the build-up of strain with increasing temperature. / Ph. D.
24

Biochemical characterization of Aspergillus fumigatus SidA: a flavin-dependent N-hydroxylating enzyme

Chocklett, Samuel Wyatt 06 January 2010 (has links)
Ferrichrome is a hydroxamate-containing siderophore produced by the pathogenic fungus Aspergillus fumigatus during infection. This siderophore includes N5-hydroxylated L-ornithine in the peptide backbone that serve as iron chelators. Af SidA is the L-ornithine N5-hydroxylase, which performs the first enzymatic step in the biosynthesis of ferrichrome. In this study, Af SidA was recombinantly expressed and purified as a soluble tetramer with a bound FAD cofactor. The enzyme demonstrated typical Michaelis-Menten kinetics in a product formation assay with respect to L-ornithine, but similar experiments as a function NADH and NADPH indicated inhibition at high coenzyme concentrations. Af SidA is highly specific for its substrate; however, it is promiscuous with respect to its coenzyme requirement. A multi-functional role of NADPH is observed since NADP+ is a competitive inhibitor with respect to NADPH and steady-state kinetic experiments indicate that Af SidA forms a ternary complex with NADP+ and L-ornithine for catalysis. Furthermore, in the absence of substrate, Af SidA forms a stable C4a-(hydro)peroxyflavin intermediate that is stable on the second time scale. Af SidA is also inhibited by several halides and the arginine-reactive reagent, phenylglyoxal. Biochemical comparison of Af SidA to other flavin-containing monooxygenases reveal that Af SidA likely proceeds by a sequential-ordered mechanism. / Master of Science in Life Sciences
25

Synthèse d'oxazolidines et de pyrrolidines trifluorométhylées chirales : applications en synthèse asymétrique / Synthesis of chiral trifluoromethylated oxazolidines and pyrrolidines : applications in asymmetric synthesis.

Lubin, Hodney 19 November 2010 (has links)
L'oxazolidine trifluorométhylée (trans-Fox) dérivée du (R)-phénylglycinol a été préparée sous forme diastéréoisomériquement pure par résolution dynamique induite par la cristallisation d'un mélange d'oxazolidines cis et trans.La trans-Fox a été utilisée avec succès comme auxiliaire chiral pour des réactions d'hydroxylation par l'oxygène moléculaire et de fluoration électrophile d'énolates d'amide ainsi qu'en réarrangement sigmatropique [2,3] d'amines allyliques. Après clivage, des composés énantiomériquement purs d'une grande importance synthétique sont obtenus.Une voie d'accès à des pyrrolydines trifluorométhylées chirales a été mise au point à partir de la trans-Fox. La trans 2-phenyl-5-trifluoromethylpyrrolidine a été utilisée comme auxiliaire chiral pour des réactions d'alkylation asymétriques. / The trifluoromethylated oxazolidine (trans-Fox) derived from (R)-phenylglycinol was prepared as a single diastereoisomer by a cristallisation induced dynamic resolution of a mixture of cis and trans oxazolidines.The trans-Fox was used with success as a chiral auxiliary for hydroxylation by oxygen and electrophilic fluorination of amide enolates reactions and [2,3] sigmatropic rearrangements of allylic amines. After deprotection, very synthetically useful enantiomerically pure compounds were obtained.An acces to chiral trifluoromethylated pyrrolidines was developped starting from trans-Fox. The trans 2-phenyl-5-trifluoromethylpyrrolidine was used as a chiral auxiliary for asymmetric alkylation reactions.
26

Alkane C-H bond oxidations and alkene dihydroxylations by oxorutheniumcomplexes of chelating tertiary amine ligands

Yip, Wing-ping., 葉永平. January 2004 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
27

Induction of 16α Hydroxylase in Human Cultured Lymphocytes

Muijsson, Ingrid E. 12 1900 (has links)
A method is presented for 160hydroxylase (SAH) induction in cultured human lymphocytes. SAH, a microsomal-associated enzyme, effects the oxidative conversion of 17pestradiol to estriol, which competes for cytoplasmic binding sites. 17,-estradiol and estrone are known mammary carcinogens, while estriol and its epimers have been suggested to have anticarcinogenic properties. To substantiate genetic variations of hydroxylase activity, an analysis of estrogen-induced cultured human lymphocytes was conducted to evaluate the frequency distribution of low, intermediate, and high SAH activity. Frequency analysis indicated that the control population distribution of SAH activity does not corroborate a proposed trimodal expansion of human SAH activity. A log normal distribution of SAH activity does exist, which suggests a polygenic mode of genetic control. SAH activity in a population of breast cancer patients and relatives of breast cancer patients showed no statistical difference from the SAH activity in the control population.
28

Mechanistic Studies of Peptidylglycine Alpha-Amidating Monooxygenase (PAM)

McIntyre, Neil R 26 March 2008 (has links)
Peptide hormones are responsible for cellular functions critical to the survival of an organism. Approximately 50% of all known peptide hormones are post-translationally modified at their C-terminus. Peptidylglycine alpha-amidating monooxygenase (PAM) is a bi-functional enzyme which catalyzes the activation of peptide pro-hormones. PAM also functionalizes long chain N-acylglycines suggesting a potential role in signaling as their respective fatty acid amides. As chain length increases for N-acylglycines so does the catalytic efficiency. This effect was probed further by primary kinetic isotope effects and molecular dynamics to better resolve the mechanism for improved catalytic function. The 1°KIE showed a linear decrease with increasing chain length. Neither the minimal kinetic mechanism nor the maximal rate for substrate oxidation was observed to be altered by substrate hydrophobicity. It was concluded that KIE suppression was a function of 'Pre-organization' - more efficient degenerate wave function overlap between C-H donor and Cu(II)-superoxo acceptor with increased chain length. Substrate activation is believed to be facilitated by a Cu(II)-superoxo complex formed at CuM. Benzaldehyde imino-oxy acetic acid undergoes non-enzymatic O-dealkylation to the corresponding oxime and glyoxylate products. This phenomena was further studied using QM/MM methodology using different Cu/O species to determine which best facilitated the dealkylation event. It was determined that radical recombination between a Cu(II)-oxyl and a substrate radical to form an unstable copper-alkoxide intermediate was best suited to carry out this reaction. Structure-function analysis was used to rationalize the electronic features which made a variety of diverse imino-oxy acetic acid analogues such unexpectedly good PAM substrates (104-5 M-1s-1). To observe the effect oxygen insertion and placement had on substrates between N-benzoylglycine and benzaldehyde imino-oxy acetic acid structures, PAM activity was correlated with NBO/MEP calculations on selected PHM-docked structures. This work concluded that the imino-oxy acetic acid was a favored substrate for PAM because its oxime electronically is very similar to the amide present in glycine-extended analogues.
29

Systemic oxidant stress and its effects on hepatotoxicity

Wright, Paul F. A. (Paul Frank Albert) January 1988 (has links) (PDF)
Bibliography: leaves 162-174.
30

The enzymology and mechanisms of cytochrome P450-catalyzed aliphatic desaturation /

Fisher, Michael B. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographic references (leaves [144]-153).

Page generated in 0.1505 seconds