• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • 5
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 47
  • 47
  • 22
  • 20
  • 18
  • 16
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Hyperbranched Polyethers Via Melt-Transetherification Polymerization

Saha, Animesh 03 1900 (has links)
Dendrimers are highly branched macromolecules which are prepared by a stepwise procedure. The presence of a well-defined core, discrete generations and a large number of terminal groups in dendrimers make them structurally very interesting and potentially useful for a wide variety of applications.1 Hyperbranched polymers,2 on the other hand, do not possess a unique core or discrete generations and they contain a large number of statistically distributed defects. Despite the presence of structural imperfections, studies have indicated that hyperbranched polymers capture many of the essential features of dendrimers, such as adoption of a compact conformation and the presence of a large number of readily accessible terminal functional groups. The first chapter of this thesis provides a brief introduction to hyperbranched polymers, with an emphasis on different methods for synthesizing them, followed by a discussion of the various approaches to control their molecular structural features, such as molecular weight, polydispersity, degree of branching, branching density, terminal end-groups, etc. One of the main objectives of the present study is to develop a simple synthetic strategy to generate peripherally functionalized (or functionalizable) hyperbranched polymers (HBP) that could potentially exhibit core-shell type behavior; in other words, polymers that carry segments of distinctly different solubility preferences within the core-region and the peripheral shell. To this end, in chapter 2 we describe the use of the melt-transetherification process,3 using an AB2 monomer along with a mono-functional A-R type comonomer, to directly generate core-shell type hyperbranched structures in a single step.4 Given that an AB2 monomer carries one equivalent excess of B functionality, copolymerization with an A-R type molecule bearing a single A functional group, readily permits the decoration of the periphery of the hyperbranched structures with these R-units. Thus, hyperbranched polyethers having polyethylene glycol (PEG) segments at their molecular periphery were prepared by a simple procedure wherein an AB2 type monomer was melt-polycondensed with an A-R type monomer, namely heptaethylene glycol monomethyl ether (HPEG). The presence of a large number of PEG units at the termini rendered a lower critical solution temperature (LCST) to these copolymers, above which they precipitated out of an aqueous solution.5 In an effort to understand the effect of various molecular structural parameters on their LCST, the length of the hydrophobic spacer segment within the hyperbranched core and the extent of PEGylation, were varied. Increase in the size and hydrophobicity of the hyper-core resulted in a continuous lowering of its LCST, while an increase in the level of PEGylation, increases the LCST, for a given size of the hyper-core. Additionally, linear analogues that incorporates pendant PEG segments were also prepared and comparison of their LCST with that of the hyperbranched polymer clearly revealed that the hyperbranched topology leads to a substantial increase in the LCST, highlighting the importance of the peripheral placement of the PEG units as shown in figure 1.5 This observation also provided an indirect evidence for the development of core-shell type topology in these peripherally functionalized hyperbranched structures. Figure 1. Transmittance of a 0.4 wt % aqueous solution of the linear and hyperbranched polymers as a function of temperature, measured at 600 nm. Such core-shell type HBPs could be also exploited both as unimolecular micelles and reverse micelles by suitably modifying the nature of the AB2 and A-R type monomers4. In the third chapter, the preparation and dye-encapsulation properties of unimolecular micelles as well as reverse micelles based on core-shell HBPs have been presented. In case of micelle forming polymers, an AB2 monomer carrying a decamethylene spacer was used along with heptaethylene glycol monomethyl ether (HPEG) as the A-R type comonomer. One the other hand, for the preparation of reverse micelle forming polymers, an AB2 monomer containing an oligo(oxyethylene) spacer was used along with cetyl alcohol as the A-R type comonomer as shown in scheme 1. The former was readily soluble in water while the latter was soluble in hydrocarbon solvents, like hexane. NMR spectral studies confirmed that both the approaches generated highly branched structures wherein ca. 65-70 % of the terminal B groups were capped by the A-R comonomer. scheme1. Synthesis of the unimolecular micelle and reverse micelle forming polymers using a one step AB2 + A-R type copolymerization. (REFER PDF FILE) One of the approaches commonly used to demonstrate core-shell behavior is to examine the ability of such polymers to encapsulate appropriate dyes from a suitable medium. In the case of the micelle-forming polymer, an aqueous solution of the polymer (6 μM) was sonicated in the presence of excess pyrene for varying periods of time. From the UV-visible spectra (Figure 2) of the aqueous solution (after filtration), it is evident that the saturation uptake is attained in about 7 h. Similar studies were also carried out for reverse-micelle forming polymers in hexane, using methyl orange as the dye. These dye-uptake studies, in conjunction with dynamic light scattering, unequivocally confirmed the formation of unimolecular micelles/reverse micelles. Figure 2. Absorbance as a function of sonication time for micelle-forming polymers (A), and absorbance as a function of the amount of solid dye taken, for reverse micelle-forming polymers (B). (REFER PDF FILE) Another novel approach to generate core-shell systems, using A2 + B3 + A-R type terpolymerization, was also explored in an effort to simplify the synthesis even further. However, dye-uptake measurements revealed that the polymers prepared via the AB2 + A-R approach exhibited a significantly larger uptake compared to those prepared via the A2 + B3 + A-R approach. This suggests that the AB2 + A-R approach generates hyperbranched polymers with better defined core-shell topology when compared to polymers prepared via the A2 + B3 + A-R approach, which is in accordance with previous studies6 that suggest that A2 + B3 approach yields polymers with significantly lower branching levels and consequently less compact structures. In chapter 4, different strategies for functionalization of the core-region and periphery of core-shell type hyperbranched polymers (HBP) using the “click” reaction7 have been explored. For achieving peripheral functionalization, an AB2 + A-R1 + A-R2 type copolymerization approach was used (as depicted in scheme 2), where the A-R1 is heptaethylene glycol monomethyl ether (HPEG-M) and A-R2 is tetraethylene glycol monopropargyl ether (TEG-P). A very small mole-fraction of the propargyl containing monomer, TEG-P was used to ensure that the water-solubility of the core-shell type HBP is minimally unaffected. Scheme 2. Preparation of a hyperbranched polyether having a few percent of propargyl groups at the molecular periphery and further click reaction to place fluorophores at the periphery. Similarly, to incorporate propargyl groups in the core region, a new propargyl group bearing B2-type monomer was designed and utilized in an AB2 + A2 + B2 + A-R1 type copolymerization, such that the total mole-fraction of B2 + A2 is small and their mole-ratio is 1:1 (Scheme 3). Further, using a combination of both the above approaches, namely AB2 + A2 + B2 + A-R1 + A-R2, hyperbranched structures that incorporate propargyl groups both at the periphery and within the core were synthesized. Since the AB2 monomer carries a C-6 alkylene spacer and the periphery is PEGylated, all the derivatized polymers form core-shell type structures in aqueous solutions. In order to ascertain and probe the location of the propargyl groups in these HBP’s, a fluorescent azide, namely azidomethyl pyrene, was quantitatively clicked onto these polymers and their fluorescence properties were examined in solvents of different polarities. Fluorescence spectra in water was unable to differentiate between the fluorophores present at different locations suggesting that the tethered pyrene at the end of a flexible oligoethylene oxide unit is probably tucked within the core-region because of its intrinsic hydrophobic nature. Scheme 3. Preparation of a hyperbranched polyether bearing a few percent of the propargyl groups within the core and further click reaction to place fluorophores in the core-region. The conventional melt-transetherification polymerization proceeds by continuous removal of methanol as volatile by product.3 The fifth chapter describes the design and development of a new AB2 monomer that carries two propargyloxy benzyl groups and one hydroxyl group, which underwent melt-transetherification condensation by exclusion of propargyl alcohol (instead of methanol) to generate a hyperbranched polyether containing numerous propargyl ether groups located on their molecular periphery as shown in scheme 4. These propargyl groups were readily “clickable” under very mild conditions with a variety of azides using the copper (I) catalyzed Huisgen type dipolar cycloaddition, popularly known as click reaction,7 to generate a range of functionalized hyperbranched polymers. The simplicity of the monomer synthesis, the solvent-free melt polymerization process and the mild conditions under which quantitative peripheral derivatization is achievable, makes this process ideally suited for the generation of hyperscaffolds onto which a wide range of functionalities could be placed. This turned out to be a rather remarkable extension of the melt transetherification polymerization that permitted the direct generation of peripherally clickable hyperbranched scaffold that, in principle, could be used to generate a wide range of interesting structures. Scheme 4. Synthesis of the hyperbranched polyether with clickable surface in a single step. (For structural formula pl refer pdf file)
2

Hyperbranched Polymers in Nanocomposites and Nanohybrides

Elsayed, Hamed 29 February 2012 (has links) (PDF)
Hyperbranched polymers (HBP) have drawn much attention and obtained intensive research activities from both industry and academia in the last three decades. They belong to a group of macromolecules called dendritic polymers, which have peculiar and often unique properties, which derive from their three-dimensional structure and the large number of functional groups. These structural characteristics provide high possibilities for controlling functional group interactions and modifications of other polymers in coatings and therefore, they are expected to result in novel materials with desired properties. They own a highly branched backbone, which gives access to many of reactive groups; their structure gives them excellent flow and processing properties, and they are characterized by lower viscosity than those of linear polymers of comparable molecular weight. Such properties make HBP extremely interesting for coatings and UV-curing applications and for this, they have attracted a great deal of attention for application, e.g. for powder coatings, high solid coatings, flame retardant coatings, barrier coatings for flexible packaging,and they have been recently suggested as a component of a dual-cure formulation based on an UV-curable epoxy resin and a functionalized alkoxysilane additive as an inorganic precursor to achieve advanced functional hybrid coatings. By pursuing this research line, we have synthesized an aliphatic–aromatic ethoxysilyl modified hyperbranched polyester system to be used in the preparation of UV-curable epoxy hybrid organic–inorganic coatings. The addition of ethoxysilyl-modified HBP could act as a coupling agent during the formation of the inorganic domains generated in-situ via sol-gel process starting from the alkoxysilane as inorganic precursors. The cured films were characterized in terms of their dynamic-mechanical properties and surface hardness: the obtained properties were discussed in relation to the achieved morphologies. In the present work, some aromatic hyperbranched polyesters (aHBP) and aliphatic-aromatic hyperbranched polyesters (aaHBP), OH terminated have been used as matrices for nanocomposites containing TiO2. The TiO2 nanoparticles were synthesized via sol-gel directly in a solution containing the HBP polyester as a stabilizer, and then the polymer/TiO2 hybrid mixtures were thermally cured by a curing agent to obtain a hard coating or a film. In order to determine the conditions in which it was possible to get the best dispersion and the properties for the final material, the starting HBP-OH was also partially modified with alkoxysilane groups by 3-isocyanatopropyltriethoxysilane (IPTES), yielding modified aliphatic-aromatic hyperbranched polyesters aaHBP(OH)-Si and modified aromatic hyperbranched polyesters aHBP(OH)-Si, enabling it to interact with the TiO2 network. Both materials obtained were then characterized, and their properties compared.
3

Studies Of Moisture-induced Crosslinking in Some Novel Vinyl Ether-Maleic Anhydride Copolymers and Terpolymers And Synthesis And Characterization Of Hyperbranched Polyketals

Rema, B 03 1900 (has links) (PDF)
No description available.
4

Synthesis And Characterization Of Fatty Acid Based Hyperbranched Polymers For Anti-cancer Drug Delivery

Guc, Esra 01 June 2008 (has links) (PDF)
Conventional methods of chemotherapy requires novel therapy systems due to serious side effects and inefficiency of drug administration. In recent years many studies are carried out to improve drug delivery systems. Polymers are one of the most important elements for drug delivery research due to their versatility. By the discovery of dendritic polymers, drug delivery studies gained a new vision. Highly branched monodisperse structure, multiple sites of attachment, well-defined size and controllable physical and chemical properties make them efficient drug delivery systems. In this research hyperbranched dendritic polymers were sythesized and characterized for hydrophobic drug delivery. Dipentaerythritol which was used as core molecule, esterified with dimethylol propionic acid. Ricinoleic acid was esterified with the end groups of dimethylol propionic acid and hyperbranched resin (HBR) was formed. By considering the properties of HBR, hydrophobic tamoxifen and idarubicin were used for drug delivery study. The most efficient loading was determined as 73% for tamoxifen and 74% for idarubicin. Drug-HBR interactions and changes in properties of HBR were determined by FTIR, zeta potential and particle size measurements. FTIR results indicated that idarubicin chemically interacted with HBR while tamoxifen physically loaded to HBR. Drug delivery profile of HBR was studied in the absence and presence of lipase from Pseudomonas sp. and sodium dodecyl sulfate (SDS). Results revelaed that lipase and SDS increased the release rate of tamoxifen while idarubicin release rate was not affected. The effect of lipase was also tested for the degradation of HBR and it was indicated that lipase sustain a faster degradation. Finally toxicity of HBR and drug loaded HBR on MCF-7 breast cancer cell line was determined with XTT proliferation assay. Empty HBR did not cause significant toxicity on MCF-7 cells while drug loaded HBR was more toxic than free drug. By this study the efficiency of novel synthesized hyperbranched polymer in drug delivery was shown.
5

Etude et développement de substrats microporeux pour l'adsorption du radon et son application en physique du neutrino / Study and development of microporous organic compounds for radon adsorption and his application in particle physics

Noël, Raymond 30 November 2015 (has links)
Le neutrino est l'une des douze particules élémentaires du modèle standard. Il se caractérise par une charge électrique nulle et une masse extrêmement petite. De nombreuses expériences ont été conçues afin d'étudier les propriétés des neutrinos. Malgré les avancées effectuées jusqu'à présent, la nature du neutrino est, encore aujourd'hui, inconnue. La collaboration NEMO (Neutrino Ettore Majorana Observatory) étudie la double désintégration bêta sans émission de neutrino, phénomène radioactif très rare, afin de découvrir la nature du neutrino et de déterminer s'il est, ou non, identique à son antiparticule. Aujourd'hui, la collaboration NEMO construit un nouveau détecteur baptisé SuperNEMO. Le gaz présent dans le détecteur requiert une concentration en radon inférieur à 100 µBq/m3, afin de minimiser le bruit de fond radioactif. La purification du gaz est réalisée grâce l'adsorption du radon par des matériaux microporeux. Dans ce travail, nous avons développé au CPPM (Centre de Physique des Particules de Marseille) un banc de mesures pour quantifier l'adsorption du radon par divers matériaux, afin d'en tirer un modèle, et atteindre les conditions de pureté requise pour SuperNEMO. En parallèle avec l'étude d'adsorbants disponibles, et de manière à mieux explorer la problématique de l'adsorption du radon, nous avons synthétisé et étudié au CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) des composés polyaromatiques hydrocarbonés étoilés et des polymères aromatiques branchés ou dendritiques, incorporant du soufre, pour adsorber le radon. / The neutrino is one of the twelve elementary particles from the standard model. It is characterize by a neutral electrical charge and an extremely low mass. Many experiments have been set up in order to study the properties of neutrino. Despite scientific breakthrough, the nature of this particle is still unknown up to now. The NEMO collaboration is studying the neutrinoless double beta decay, a very rare radioactive process, to find out the nature of neutrino and to know if the neutrino is equivalent to the antineutrino. Today, the NEMO collaboration is building a new detector called SuperNEMO. The gas inside the detector need to have a concentration in radon below 100 µBq/m3, to minimize the radioactive background. The purification of this gas is achieved from the adsorption of radon by microporous material. In this work, we have developed in CPPM a bench test to measure the radon adsorption by various materials, in order to propose an adsorption model, and to reach the purity condition needed for SuperNEMO. Along with the study on adsorbents available and to better understand the radon adsorption, we synthetized and studied at CINaM star-shape polyaromatic hydrocarbons and branched or dendritic aromatic polymers, incorporating sulfur, to adsorb radon.
6

Studies On Hyperbranched Polymers

Anil Kumar, * 08 1900 (has links) (PDF)
No description available.
7

Hyperbranched Polymers in Nanocomposites and Nanohybrides

Elsayed, Hamed 17 February 2012 (has links)
Hyperbranched polymers (HBP) have drawn much attention and obtained intensive research activities from both industry and academia in the last three decades. They belong to a group of macromolecules called dendritic polymers, which have peculiar and often unique properties, which derive from their three-dimensional structure and the large number of functional groups. These structural characteristics provide high possibilities for controlling functional group interactions and modifications of other polymers in coatings and therefore, they are expected to result in novel materials with desired properties. They own a highly branched backbone, which gives access to many of reactive groups; their structure gives them excellent flow and processing properties, and they are characterized by lower viscosity than those of linear polymers of comparable molecular weight. Such properties make HBP extremely interesting for coatings and UV-curing applications and for this, they have attracted a great deal of attention for application, e.g. for powder coatings, high solid coatings, flame retardant coatings, barrier coatings for flexible packaging,and they have been recently suggested as a component of a dual-cure formulation based on an UV-curable epoxy resin and a functionalized alkoxysilane additive as an inorganic precursor to achieve advanced functional hybrid coatings. By pursuing this research line, we have synthesized an aliphatic–aromatic ethoxysilyl modified hyperbranched polyester system to be used in the preparation of UV-curable epoxy hybrid organic–inorganic coatings. The addition of ethoxysilyl-modified HBP could act as a coupling agent during the formation of the inorganic domains generated in-situ via sol-gel process starting from the alkoxysilane as inorganic precursors. The cured films were characterized in terms of their dynamic-mechanical properties and surface hardness: the obtained properties were discussed in relation to the achieved morphologies. In the present work, some aromatic hyperbranched polyesters (aHBP) and aliphatic-aromatic hyperbranched polyesters (aaHBP), OH terminated have been used as matrices for nanocomposites containing TiO2. The TiO2 nanoparticles were synthesized via sol-gel directly in a solution containing the HBP polyester as a stabilizer, and then the polymer/TiO2 hybrid mixtures were thermally cured by a curing agent to obtain a hard coating or a film. In order to determine the conditions in which it was possible to get the best dispersion and the properties for the final material, the starting HBP-OH was also partially modified with alkoxysilane groups by 3-isocyanatopropyltriethoxysilane (IPTES), yielding modified aliphatic-aromatic hyperbranched polyesters aaHBP(OH)-Si and modified aromatic hyperbranched polyesters aHBP(OH)-Si, enabling it to interact with the TiO2 network. Both materials obtained were then characterized, and their properties compared.
8

SYNTHESIS AND FUNCTIONALIZATION OF HYPERBRANCHED POLY(METHYL METHACRYLATE)

Zhao, Chenying 29 August 2019 (has links)
No description available.
9

Bridging the Gap: Developing Synthetic Materials with Enzymatic Levels of Complexity and Function

Fuller, Kristin M. 03 September 2020 (has links)
No description available.
10

Synthesis of hyperbranched polymethacrylates by a bromoinimer approach

Liu, Chenwei 08 June 2018 (has links)
No description available.

Page generated in 0.0733 seconds