• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • 5
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 47
  • 47
  • 22
  • 20
  • 18
  • 16
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis and characterization of bis-MPA based branched polymers with thymine core

Zelentsova, Elena 20 July 2009 (has links)
Synthesis and characterisation of the bis-MPA based branched materials was performed. Thymine derivative was incorporated into the polymer structure as a core moiety and an active centre for H-bonding. The formation of assemblies was investigated. / Im Rammen der Doktorarbeit wurden bis-MPA basierter dendrititsche und hochverzweigte Polymeren synthetisiert. Sie haben Thymin Derivat als Kernmolecule. Die H-Brücken zwischen Polymeren und DAPy Derivate wurden untersucht.
22

Functionalized Hyperbranched Polymers And Nonionenes

Roy, Raj Kumar 07 1900 (has links) (PDF)
In 1980’s a new class of material named as dendrimer became popular both in the field of polymer science and engineering. Dendrimer is an example of symmetric, highly branched three dimensional globular nano-object. It possess several interesting physical and chemical properties like low solution and melt-viscosity, lower intermolecular chain entanglement, large number of end groups placed at the molecular periphery, relatively high solubility with respect to their linear counterpart. In order to get this perfectly branched structure, one has to go through the tedious multistep synthetic approach, repetitive chromatographic purification and protection-deprotection strategies in every step; all of which limits the large scale production and thus commercialization. On the other hand, hyperbranched polymer, a highly branched analogue of dendritic polymer with few defects in their branching architecture, which can be prepared in a single step, show similar physical and chemical properties as that of dendrimer. Polymerization of AB2 monomer is one of the well established method to generate hyperbranched polymer which upon polymerization, generates plenty of ‘B ’groups at the periphery along with a single ‘A’ group as a focal point in the resulting hyperbranched polymer as shown in Figure 1. From the structural point of view, hyperbranched polymers consist of three distinctly different compartments such as periphery, interior and a (single) focal point. During the past decade our lab have developed a novel melt trans-etherification process to generate polyethers and have utilized to access to a wide variety of hyperbranched structures. One of the challenges we addressed is to selectively functionalize the periphery of the hyperbranched polymer during the polymerization process. Polycondensation of ‘AB2’ monomer is not sufficient enough to generate a wide variety of hyperbranched polymer as the periphery of hyperbranched polymer is limited to the ‘B’ functional group unless it could be modified via ‘post-polymerization modifications’. Copolymerization of ‘AB2’ monomer with stoichiometric amount of ‘A-R’ monomer should result in hyperbranched polymer decorated with ‘R’ groups in the periphery that can be prepared in a single step. One of the prerequisite in the ‘AB2+A-R’ approach is that the comonomer ‘A-R’ should have silent ‘R’ group which does not interfere during the polymerization. During the copolymerization process with stoichiometric amount of ‘A-R’ monomer, ‘AB2’ monomer having one equivalent excess of ‘B’ can react with the ‘A’ group from ‘A-R’ monomer eventually generating the hyperbranched structure with peripheral ‘R’ groups. By appropriately choosing the ‘R’ group, one can access a wide class of hyperbranched polymer with the required functionality. Further by having a reactive ‘R’ group that is not participating in polymerization can act as a handle for post-polymerization modifications. For instance, copolymerization of 1-(6-Hydroxyhexyloxy)-3,5-bis(methoxymethyl)-2,4,6-trimethylbenzene (Hydroxy as ‘A’ and methoxy as ‘B’) and 6-bromo-1-hexanol where ‘OH’ and ‘-(CH2)6Br’ is ‘A’ and ‘R’ functional groups respectively, generates hyperbranched polymer with peripheral alkyl bromide functional groups as shown in Figure 2. The peripheral alkylbromides has been quantitatively transformed to quaternary ammonium or pyridinium salts using trimethyl amine or pyridine respectively. Thus by the post polymerization modification, we have transformed a hydrophobic hyperbranched polymer to a water soluble cationic hyperbranched polymer by simple and efficient post-polymerization modification. In a slightly different objective we Another problem that I have addressed is the difficulty associated with the aforementioned copolymerization approach. In spite of the fact that stoichiometric amounts of ‘A-R’ type monomer was taken in ‘AB2 + A-R’ approach, the extent of peripheral functionalization i.e. the incorporation of ‘R’ group is relatively lower. Further the molecular weight of the hyperbranched polymer obtained is also not high. One of the reasons we adopted ‘AB2 + A-R’ approach is to provide a functional handle for the subsequent post-polymerization modification. We modified the ‘AB2’ type monomer with a functionalizable handle to circumvent the lower amount of incorporation of the ‘A-R’ type monomer in ‘AB2 + A-R’ approach. Of all the readily functionalizable handles, click chemistry found to be a very useful tool for the post-polymerization modifications as the reactions conditions are mild, no side product, high selectivity, easy purification, etc. Another advantage of this reaction is that, we can incorporate any type of functional group starting from a single clickable parent hyperbranched polymer. In this particular project, I have Earlier design of the ‘AB2’ type monomer in our group, to prepare hyperbranched polymer via melt transetherification process, involved benzylic methoxy groups as ‘B’ in ‘AB2’ monomer leading to a hyperbranched polymer with peripheral methoxy groups. Transetherification under melt-conditions is an equilibrium reaction which was driven towards the hyperbranched polymer by continuous removal of methanol from the system as a volatile alcohol. In the new design of ‘AB2’ monomer; we have used benzylic allyloxy groups as ‘B’ in ‘AB2’ monomer, where in polymerization is driven by the continuous removal of allyl alcohol (instead of methanol as in the previous case), generates hyperbranched polymer with peripheral allyloxy group containing hyperbranched polymer. The allyloxy groups can be subsequently functionalized with a variety of thiol, we prepared a hydrocarbon-soluble octadecyl-derivative, amphiphilic systems using 2-mercaptoethanol and chiral amino acid (N-benzoyl cystine) hyperbranched structures by using thiol-ene click reactions (Figure 3). Polymers prepared from the parent hyperbranched polymer have significantly different physical properties like glass transition temperature (Tg), melting point (Tm) etc; thus considering the versatility of functionalization, parent polymer could be envisioned as a clickable hyperscaffold. More interestingly by functionalizing cystine derivative, we have demonstrated the possibility of biconjugation of the hyperbranched polymer. In summary, the limitations of ‘AB2+A-R’ copolymerization approach (low molecular weight Molecular weight and molecular weight distribution are very important parameters that influence the physical property and thus the application of the polymeric materials. As predicted by Flory, hyperbranched polymers are inherently polydisperse in nature and it tends to infinity when the percent of conversion is very high. Experimentally observed value of polydispersity is also significantly higher compared to their linear analogues. Control of the molecular weight and polydispersity of hyperbranched polymer by using a suitable amount of reactive multifunctional core has been demonstrated in this project. We have substantiated by using very little amount of ‘B3’ core along with ‘AB2’ monomer; wherein ‘B’ in ‘B3’ are more reactive than ‘B’ in ‘AB2’ monomer, regulate the molecular weight and polydispersity of the resulting hyperbranched polymer. As the ratio of core to monomer increases the molecular weight and polydispersity reduces in nearly linear fashion. In a slightly different objective, the core and periphery are functionalized with two different fluorophore by using orthogonal click reactions and demonstrated the possibility of energy transfer from periphery to the core of the hyperbranched polymer. In this section of my thesis, the self-assembly behavior of a periodically grafted amphiphilic copolymer has been studied. Polymer was synthesized via melt transesterification approach where hexaethylene glycol monomethyl ether (HEG) containing diester monomers are reacted with alkylyne diol monomers with varying carbon spacer (C12 and Another interesting problem, I approached is to functionalize the interior part of the hyperbranched polymer. In the case of dendrimer, as it is a step-wise synthesis, internal functionalization could be accomplished with the order of monomer addition i.e. by putting the internal functional group containing monomer first followed by other monomer not having those functional groups, whereas it is a bit challenging task for hyperbranched polymers especially when dealing with polycondensation of AB2 monomers, as it is a single step polymerization process. For a hyperbranched polymer in the polycondensation of ‘AB2’ monomer, the internal functional group should reside in between of the ‘A’ and ‘B’ functional group wherein the internal functional groups are silent during the process of polymerization. In order to do so, we have designed and synthesized a new AB2 monomer (a in Figure: 4). Here decanol is the volatile condensate that was removed during the transetherification reactions leading to a hyperbranched polymer having allyl group as the internal functional group and decyloxy as the peripheral functional group (b in Figure: 4). As a post-polymerization modification, the interior allyl groups were modified by thiol-ene click reaction with variety of thiol derivatives. In one example, the inherent hydrophobic nature of the parent hyperbranched polymer which is enhanced by the decyl chain at the molecular periphery, is converted to a alkaline water soluble hyperbranched polymer by the click reaction with mercapto succinic acid (d in Figure: 4) or mercapto propionic acid (c in Figure: 4) to the internal allyl groups, generating a novel amphiphilic hypersystem. This kind of amphiphilic systems are very interesting to study for their self-assembly behavior, in this particular case, the modified hyperbranched polymer adopts as a large spherical aggregates in alkaline water evidenced by FESEM (Figure: 4) and AFM images. Further investigation is being carried out to understand the exact nature of these aggregates. As the hyperbranched polymer contained ‘-S-‘ group in the interior, we utilized this as the scaffold for scavenging heavy metal ions like Hg2+ from aqueous solutions to the chloroform solution containing polymer. This hyperbranched polymer could trap Hg2+ ions even when present in ppm level of contamination.
23

Synthesis and functionalization of fatty acid-based hyperbranched polymers / Synthèse et fonctionnalisation de polymères hyper-ramifiés issus d’acides gras

Passet, Quentin 29 April 2019 (has links)
Ces travaux de thèse portent sur la valorisation de la biomasse oléagineuse, via la polymérisation de synthons, issus d’huiles végétales, en polymères hyper-ramifiés. Ces recherches ont conduit à la synthèse et à la purification d’un nouveau monomère biosourcé, le 10,11-epoxy undecan-1-ol (EUnd), dont la polymérisation par ouverture de cycle (ROMBP) a permis de générer des polyéthers hyper-ramifiés biosourcés. Les conditions de polymérisations ont été étudiées en laboratoire dans le but d’optimiser les rendements de synthèse mais aussi afin de contrôler la structure chimique, ainsi que leurs propriétés. La copolymérisation de l’EUnd avec le glycidol a permis d’atteindre de nouvelles propriétés, notamment en termes de solubilité. Une seconde partie fut consacrée à la fonctionnalisation de polyesters hyper-ramifiés biosourcés, développés au LCPO lors du projet HyPerBioPol. L’objectif étant de contrôler la solubilisation des composés dans différents milieux, polaires et apolaires, afin de créer des polymères pouvant être utilisés comme agents de réticulation. / The aim of this thesis is to valorize oilseed biomass through the polymerization of building block, stemming from vegetable oils, into hyperbranched polymers. This research involves the synthesis and purification of a new bio-based monomer, coined as 10,11- epoxyundecanol (EUnd), which ring-opening multibranching polymerization (ROMBP) has generated bio-based hyperbranched polyethers (hbPEUnd). Conditions of polymerization have been studied in order to maximize yields of reaction and control both the chemical structure and the properties of hbPEUnd. Copolymerization of EUnd with glycidol has also been implemented, yielding hyperbranched copolyethers with varied properties (e.g. solubility). The second part of this work has been dedicated to the functionalization of bio-based hyperbranched polyesters, developed in the frame of a former project. Appropriate derivatizations have provided these modified polyesters with solubility in polar solvents and made them employable as curing agents.
24

Poligliceróis hiperramificados modificados para encapsulamento de fármacos em CO2-sc: síntese, comportamento em CO2-sc, encapsulamento e liberação / Modified hyperbranched polyglycerols for encapsulation of drug in sc-CO2: synthesis, behavior in sc-CO2, encapsulation and release

Maia, Lígia Passos 03 May 2016 (has links)
Materiais poliméricos têm sido explorados para o encapsulamento e liberação controlada de moléculas e o CO2-sc é um dos solventes alternativos de maior interesse da indústria farmacêutica para tal, por não deixar resíduos no produto final. Neste trabalho foram sintetizados e caracterizados polímeros do tipo \"core-shell\" tendo como \"core\" poligliceróis hiperramificados, sintetizados via abertura de anel glicidol, iniciados por três diferentes polióis e possuindo dois tipos de \"shell\" contendo grupos acetila, potencialmente compatíveis com CO2-sc. Também foi sintetizada β-Ciclodextrina peracetilada (TA-β-CD) que foi utilizada como molécula encapsulante modelo, por também ser um tipo de poliéter, ser reconhecida pela sua capacidade encapsulante, por ser uma ciclodextrina, e ser solúvel no CO2-sc. O Ibuprofeno foi o fármaco utilizado como modelo de molécula encapsulada, por ser solúvel em CO2-sc e possuir logP intermediário. O primeiro grupo de polímeros foram os poligliceróis peracetilados (PGH-Acs), que possuiam grupos acetilas como \"shell\". O estudo de seu comportamento em CO2-denso (CO2-sc e CO2 líquido próximo ao ponto crítico), pré-requisito para o encapsulamento neste meio, foi avaliado através de experimentos de expansão volumétrica e/ou solubilidade e determinação de pontos de névoa. Estes materiais apresentaram solubilidade total ou parcial, solubilizaram o CO2 e apresentaram expansão volumétrica em sua presença. A incorporação de Ibuprofeno foi realizada com sucesso, alcançando teores pouco maiores do que o apresentado para a TA-β-CD, e se mostrou associada aos valores de temperatura de transição vítrea (Tg) dos polímeros, sendo que a caracterização dos materiais encapsulados sugere que a molécula do fármaco interage preferencialmente com os grupos acetila dos materiais. Os dados do estudo de liberação das moléculas de Ibuprofeno dos materiais encapsulantes foi modelado principalmente segundo o modelo de Weibull e mostrou que ela foi prolongada, para os PGH-Acs, numa escala de horas e que foi menos lenta quanto mais hidrofílico o polímero, enquanto a liberação apresentada pela TA-&#946-CD foi imediata. Com o propósito de alcançar maiores teores de encapsulamento e liberações mais prolongadas, o segundo grupo de polímeros, com maior massa molar foi proposto. Este grupo foram os polímeros estrela PGH-PVAcs, contendo os mesmos cores dos polímeros anteriores, porém possuindo como \"shell\" cadeias lineares de poliacetato de vinila, sintetizadas via polimerização por Transferência Reversível de Cadeia por Adição-Fragmentação (RAFT). Os PGH-PVAcs solubilizaram o CO2 e apresentaram expansão, mas não foram solúveis neste solvente. A comparação do comportamento de todos os materiais estudados mostrou que a presença de grupos acetila é determinante para a sua CO2-filicidade, devido a interações específicas do tipo ácido-base de Lewis. Para os PGH-PVAcs, também houve encapsulamento do Ibuprofeno, os seus teores atingiram valores seis vezes maior do que os obtidos pelos PGH-Acs e também apresentaram associação com os valores de Tg dos polímeros. A liberação a partir deste materiais também foi prolongada, mas agora numa escala de dias e/ou meses. Os materiais obtidos se mostraram CO2-fílicos e capazes de encapsular Ibuprofeno em CO2-sc, sendo que o seu comportamento em CO2 denso, sua capacidade encapsulante e suas características de liberação podem ser modulados pela composição de sua estrutura \"core-shell\". / Polymeric materials have been explored for encapsulation and controlled release of molecules and sc-CO2 is one of the alternative solvents with most interest for the pharmaceutical industry for this purpose, for it does not leave traces at the final product. In this work, core-shell type polymers were synthesized and characterized. The polymers had hyperbranched polyglycerols initiated by three different polyols and synthesized through ring opening polymerization of glicidol, as cores; and had two diferente types of shells, bearing acetyl groups, potentially compatible with sc-CO2. Also Peracetilated β-Cyclodextrin (TA-β-CD) was synthesized, to be used as the model encapsulating material, because it is also a kind of polyether, is known for its encapsulating capacity, for being a cyclodextrin, and is soluble in sc-CO2. The Ibuprofen was the model drug chosen for the encapsualtion because it is soluble in sc-CO2 and has an intermediary logP. The first group of polymers were the peracetilated polyglycerols (PGH-Acs), bearing acethyl groups as their \"shell\". The behavior of those materials in dense CO2 (sc-CO2 and liquid CO2), pre-requisite for the encapsulation using this media, was evaluated through experiments of volumetric expansion and/or solubility and determination of cloud points. These materials presented solubility (total or partial), solubilized the CO2 and presented expansion in its presence. The incorporation of Ibuprofen was successfully performed, reaching levels slightly higher than the one presented by the TA-β-CD, and it showed to be associated with the values of the glass transition temperature (Tg) of the polymers; the characterization of the encapsulated materials suggests that the molecule of the drug interacts preferentially with the acetyl groups of the materials. The data of the release study of the Ibuprofen molecules from the encapsulating materials was modelled mainly through the Weibull model and showed, for the PGH-Acs materials, that the release was prolonged for a time scale of hours and was faster as the hydrophilicity of the polymers increases, while the release of Ibuprofeno from the TA-β-CD was immediate. Aiming to reach higher levels of encapsulation and also more prolonged releases, a second group of core-shell polymers, with a higher molar mass was proposed. This group was the one of the star polymers PGH-PVAc, having the same cores as the other polymers, but bearing as shell, linear chains of polyvinyl acetate, synthesized via Reversible Addition-Fragmentation Transfer (RAFT) Polymerization. The PGH-PVAc presented expansion, solubilized the solvent, but where not soluble in it. The comparison of the behavior of all studied materials showed that the presence of the acetyl groups is determinant for their CO2 -philicity and this because these groups and CO2 show specific interactions of the Lewis acid-base type. For the PGH-PVAcs the incorporation of Ibuprofen was also successfully performed and their levels reached six times higher than the ones obtained for the PGH-Acs and also presented association with the values of the Tg of the polymers. The release from these materials are also prolonged, but now in a time scale of days/months. The obtained materials have shown to be CO2-philic and able to encapsulate Ibuprofen in CO2-sc media. Their behavior in dense CO2, their encapsulation ability and the characteristics of the release can be modulated through the composition of their core-shell structure.
25

Poligliceróis hiperramificados modificados para encapsulamento de fármacos em CO2-sc: síntese, comportamento em CO2-sc, encapsulamento e liberação / Modified hyperbranched polyglycerols for encapsulation of drug in sc-CO2: synthesis, behavior in sc-CO2, encapsulation and release

Lígia Passos Maia 03 May 2016 (has links)
Materiais poliméricos têm sido explorados para o encapsulamento e liberação controlada de moléculas e o CO2-sc é um dos solventes alternativos de maior interesse da indústria farmacêutica para tal, por não deixar resíduos no produto final. Neste trabalho foram sintetizados e caracterizados polímeros do tipo \"core-shell\" tendo como \"core\" poligliceróis hiperramificados, sintetizados via abertura de anel glicidol, iniciados por três diferentes polióis e possuindo dois tipos de \"shell\" contendo grupos acetila, potencialmente compatíveis com CO2-sc. Também foi sintetizada β-Ciclodextrina peracetilada (TA-β-CD) que foi utilizada como molécula encapsulante modelo, por também ser um tipo de poliéter, ser reconhecida pela sua capacidade encapsulante, por ser uma ciclodextrina, e ser solúvel no CO2-sc. O Ibuprofeno foi o fármaco utilizado como modelo de molécula encapsulada, por ser solúvel em CO2-sc e possuir logP intermediário. O primeiro grupo de polímeros foram os poligliceróis peracetilados (PGH-Acs), que possuiam grupos acetilas como \"shell\". O estudo de seu comportamento em CO2-denso (CO2-sc e CO2 líquido próximo ao ponto crítico), pré-requisito para o encapsulamento neste meio, foi avaliado através de experimentos de expansão volumétrica e/ou solubilidade e determinação de pontos de névoa. Estes materiais apresentaram solubilidade total ou parcial, solubilizaram o CO2 e apresentaram expansão volumétrica em sua presença. A incorporação de Ibuprofeno foi realizada com sucesso, alcançando teores pouco maiores do que o apresentado para a TA-β-CD, e se mostrou associada aos valores de temperatura de transição vítrea (Tg) dos polímeros, sendo que a caracterização dos materiais encapsulados sugere que a molécula do fármaco interage preferencialmente com os grupos acetila dos materiais. Os dados do estudo de liberação das moléculas de Ibuprofeno dos materiais encapsulantes foi modelado principalmente segundo o modelo de Weibull e mostrou que ela foi prolongada, para os PGH-Acs, numa escala de horas e que foi menos lenta quanto mais hidrofílico o polímero, enquanto a liberação apresentada pela TA-&#946-CD foi imediata. Com o propósito de alcançar maiores teores de encapsulamento e liberações mais prolongadas, o segundo grupo de polímeros, com maior massa molar foi proposto. Este grupo foram os polímeros estrela PGH-PVAcs, contendo os mesmos cores dos polímeros anteriores, porém possuindo como \"shell\" cadeias lineares de poliacetato de vinila, sintetizadas via polimerização por Transferência Reversível de Cadeia por Adição-Fragmentação (RAFT). Os PGH-PVAcs solubilizaram o CO2 e apresentaram expansão, mas não foram solúveis neste solvente. A comparação do comportamento de todos os materiais estudados mostrou que a presença de grupos acetila é determinante para a sua CO2-filicidade, devido a interações específicas do tipo ácido-base de Lewis. Para os PGH-PVAcs, também houve encapsulamento do Ibuprofeno, os seus teores atingiram valores seis vezes maior do que os obtidos pelos PGH-Acs e também apresentaram associação com os valores de Tg dos polímeros. A liberação a partir deste materiais também foi prolongada, mas agora numa escala de dias e/ou meses. Os materiais obtidos se mostraram CO2-fílicos e capazes de encapsular Ibuprofeno em CO2-sc, sendo que o seu comportamento em CO2 denso, sua capacidade encapsulante e suas características de liberação podem ser modulados pela composição de sua estrutura \"core-shell\". / Polymeric materials have been explored for encapsulation and controlled release of molecules and sc-CO2 is one of the alternative solvents with most interest for the pharmaceutical industry for this purpose, for it does not leave traces at the final product. In this work, core-shell type polymers were synthesized and characterized. The polymers had hyperbranched polyglycerols initiated by three different polyols and synthesized through ring opening polymerization of glicidol, as cores; and had two diferente types of shells, bearing acetyl groups, potentially compatible with sc-CO2. Also Peracetilated β-Cyclodextrin (TA-β-CD) was synthesized, to be used as the model encapsulating material, because it is also a kind of polyether, is known for its encapsulating capacity, for being a cyclodextrin, and is soluble in sc-CO2. The Ibuprofen was the model drug chosen for the encapsualtion because it is soluble in sc-CO2 and has an intermediary logP. The first group of polymers were the peracetilated polyglycerols (PGH-Acs), bearing acethyl groups as their \"shell\". The behavior of those materials in dense CO2 (sc-CO2 and liquid CO2), pre-requisite for the encapsulation using this media, was evaluated through experiments of volumetric expansion and/or solubility and determination of cloud points. These materials presented solubility (total or partial), solubilized the CO2 and presented expansion in its presence. The incorporation of Ibuprofen was successfully performed, reaching levels slightly higher than the one presented by the TA-β-CD, and it showed to be associated with the values of the glass transition temperature (Tg) of the polymers; the characterization of the encapsulated materials suggests that the molecule of the drug interacts preferentially with the acetyl groups of the materials. The data of the release study of the Ibuprofen molecules from the encapsulating materials was modelled mainly through the Weibull model and showed, for the PGH-Acs materials, that the release was prolonged for a time scale of hours and was faster as the hydrophilicity of the polymers increases, while the release of Ibuprofeno from the TA-β-CD was immediate. Aiming to reach higher levels of encapsulation and also more prolonged releases, a second group of core-shell polymers, with a higher molar mass was proposed. This group was the one of the star polymers PGH-PVAc, having the same cores as the other polymers, but bearing as shell, linear chains of polyvinyl acetate, synthesized via Reversible Addition-Fragmentation Transfer (RAFT) Polymerization. The PGH-PVAc presented expansion, solubilized the solvent, but where not soluble in it. The comparison of the behavior of all studied materials showed that the presence of the acetyl groups is determinant for their CO2 -philicity and this because these groups and CO2 show specific interactions of the Lewis acid-base type. For the PGH-PVAcs the incorporation of Ibuprofen was also successfully performed and their levels reached six times higher than the ones obtained for the PGH-Acs and also presented association with the values of the Tg of the polymers. The release from these materials are also prolonged, but now in a time scale of days/months. The obtained materials have shown to be CO2-philic and able to encapsulate Ibuprofen in CO2-sc media. Their behavior in dense CO2, their encapsulation ability and the characteristics of the release can be modulated through the composition of their core-shell structure.
26

Control-oriented modeling of discrete configuration molecular scale processes: Applications in polymer synthesis and thin film growth

Oguz, Cihan 08 November 2007 (has links)
The objective of this thesis is to propose modeling techniques that enable the design and optimization of material systems which require descriptions via molecular simulations. These kinds of systems are quite common in materials and engineering research. The first step in performing design and optimization tasks on such systems is the development of accurate simulation models from experimental data. In the first part of this thesis, we present a novel simulation model for the hyperbranched polymerization process of difunctional A2 oligomers, and B3 monomers. Unlike the previous models developed by other groups, our model is able to simulate the evolution of the polymer structure development under a wide range of synthesis routes, and in the presence of cyclization and endcapping reactions. Furthermore, our results are in agreement with the experimental data, and add insight into the underlying kinetic mechanisms of this polymerization process. The second major step in our work is the development of reduced order process models that are suitable for design and optimization tasks, using simulation data. We illustrate our approach on a stochastic simulation model of epitaxial thin film deposition process. Compared to the widely used approach called equation-free modeling, our method requires fewer assumptions about the dynamic system. The assumptions required in equation-free modeling include a wide separation between the time scales of low and high order moments describing the system state, and the accuracy of the time derivatives of system properties computed from molecular simulation data, despite the potentially large amount of fluctuations in stochastic simulations. Unlike the recent similar studies, our study also includes the analysis of prediction error which is important to evaluate the predictions of the reduced order model, compared to the high dimensional molecular simulations. Hence, we address two major issues in this thesis: development of simulation models from molecular experimental data, and derivation of reduced order models from molecular simulation data. These two aspects of modeling are both necessary to design and optimize processing conditions of materials for which continuum level descriptions are not available or accurate enough.
27

Einfluss der Verzweigung, Terminierung und Immobilisierung auf die Eigenschaften dünner Polyesterschichten / Influence of the branching, termination and immobilisation on the properties of thin polyester films

Reichelt, Senta 25 November 2008 (has links) (PDF)
Die vorliegende Arbeit liefert einen Beitrag zum Verständnis der komplexen Struktur-/Eigenschaftsbeziehungen dünner Schichten hochverzweigter Polyester. Für die umfassende Charakterisierung wurde eine Vielzahl analytischer Methoden kombiniert. Des Weiteren wurde das Anwendungspotential dieser Schichten hinsichtlich möglicher Sensoranwendung anhand der Adsorption von Modellproteinen gewichtet. Dazu war es notwendig verschieden Methoden zur Stabilisierung dieser Schichten zu entwickeln.
28

Synthesis and characterization of hyperbranched poly(urea-urethane)s / Synthese und Charakterisierung von Hochverzweigte Poly(harnstoff-Urethan)en

Abd Elrehim, Mona Hassan Mohammed 29 June 2004 (has links) (PDF)
The thesis aims to synthesize hyperbranched poly(urea-urethane) polymers (HPU) in one-pot method using commercially available monomers which are 2,4-toluylene diisocyanate (TDI) as aromatic diisocyanate and isophorone diisocyanate (IPDI) and 2(3-isocyanatopropyl) cyclohexylisocyanate (IPCI) as aliphatic diisocyanates. Those proposed diisocyanates were reacted with diethanolamine (DEA) or diisopropanolamine (DIPA). Conditions of polymerisation reactions were optimised. Complete structural analysis using 1H and 13C NMR for the obtained aromatic polymers was carried out. Degree of branching up to 70% was calculated. Aliphatic polymers have spectra with overlapped signals therefore, no full structural analysis was possible. Molar masses were determined using SEC/RI detector which shows that the prepared polymers have Mw values between 1600 g/mol and 106000 g/mol. Thermal analysis for different polymer systems showed that aliphatic HPU are more thermally stable and have values of glass transition temperature higher than aromatic ones. Modification of the end groups in the prepared hyperbranched polymers was carried out using three different modifiers and degree of modification up to 100%. Linear polymers based on the same diisocyanate monomers were prepared to compare the properties of hyperbranched systems with their linear analogs. Measurements of solution viscosity showed that HPU have lower solution viscosity values than their linear analogs of comparable molar masses. Rheological measurement of some polymer samples of different systems were carried out and showed that our hyperbranched systems exhibit a more elastic behavior than the linear polymers. Surface studies for thin films prepared from different polymer systems (hyperbranched, linear and modified) were carried out and the obtained thin films were characterized using light microscope, microglider, GC-MS, and AFM. Contact angle measurements showed that HPU have a relatively hydrophilic character. The modified polymers have higher contact angle values than the unmodified ones due to the lack of OH end groups. Networks based on aliphatic and aromatic HPU were prepared through the reaction of HPU with trimer of 1,6-diisocyanatohexane and characterised by DSC, GC-MS, DMA and AFM. The domain size in aromatic networks was found to be larger than in aliphatic networks. Tensile test was carried out and it was found that aliphatic network is more elastic than aromatic one.
29

Wechselwirkung von dünnen Schichten aus HVZ Polyestern im wässrigen Medium mit Modellproteinen

Mikhaylova, Yulia 01 May 2006 (has links) (PDF)
The dissertation work focuses on the whole route of material development starting from the investigations of properties of the initial (raw) HBPs to their applications. Each research step is given in a separate chapter to enhance attention to various aspects of the aim of the work. Thus, every chapter is started with an introduction. After that, the methods applied and experimental procedure are described. Next part tries to give the comprehensive description of the results obtained. At the end of the chapter, the main points are summarized. The Chapter 1 gives the theoretical description of the main experimental techniques used in this work. In Chapter 2 the chemical (chemical composition, purity, typical structure elements) and physical (glass transition temperature, the temperature of the maximum decomposition, the thermal stability at the high temperatures, molar mass, polydispersity and possible aggregation in solution) properties examined by different techniques of polymer analysis are described. The Chapter 3 is divided into three separate parts: In Chapter 3.1 the description of the formation and modification of inter- and intramolecular hydrogen bonds of hydroxyl terminated HBP is presented to reveal the information of hydroxyl groups re- and/or association due to the high temperatures applied. In Chapter 3.2 the nature of the solid-liquid interface of HBP thin films have been studied by different surface sensitive techniques with respect to further protein adsorption investigations. In Chapter 3.3 the strategy for the fabrication of surface attached carboxyl terminated HBP using "grafting to" technique is developed. The Chapter 4 consists of two parts: The first (theoretic) part outlines the basic principles of protein chemistry, factors influencing on the protein molecule stability in aqueous medium, the mechanism of protein adsorption and forces involved in the adsorption process. In the second part the combination of different in situ techniques was applied to obtain a comprehensive description of complex adsorption processes of protein molecules on different polymer surfaces.
30

Hyperstern-Polymere mit hochverzweigten Kernen und polaren Armen - Ihre Synthese, Charakterisierung und Anwendung als Reaktivbinder in Epoxy-basierten Photo- und Thermolacken

Däbritz, Frank 21 October 2011 (has links) (PDF)
Diese Dissertation beschreibt die Synthese und Charakterisierung neuartiger Hyperstern-Polymere (HSP) und deren Funktion als Reaktivbinder in Epoxy- bzw. PUR-Harzen. Hyperstern-Polymere sind Hybride aus hochverzweigten (hvz) und linearen Polymeren. Sie können über ihre reaktiven OH-Gruppen als multifunktionelle hochverzweigte Quervernetzer kovalent in ein kationisch härtendes Epoxyharz einbinden und thermische sowie thermomechanische Eigenschaften verbessern.

Page generated in 0.0947 seconds