• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • 5
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 47
  • 47
  • 22
  • 20
  • 18
  • 16
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Les huiles végétales comme plateforme pour la conception de nouveaux polyesters hyper-ramifiés / Vegetable oils as a platform for the design of novel Hyperbranched Polyesters

Testud, Blandine 08 December 2015 (has links)
Ces travaux de thèse traitent de la valorisation des huiles végétales comme plateforme pour la synthèse de polyesters d’architecture hyper-ramifiée. Pour ce faire, l’approche par polycondensation de monomères de type ABn (n ≥ 2) a été privilégiée. Des précurseurs plurifonctionnels portant des fonctions ester (A) et alcool (B) ont ainsi été préparés par modification chimique d’huiles végétales et/ou d’esters méthyliques d’acide gras. Plusieurs méthodologies de synthèse simple, sûres et efficaces ont été mises en place afin de garantir une réalité industrielle à ce projet. Deux plateformes de monomères de type ABn ont été obtenues par (1) hydrolyse acide d’huiles végétales époxydées et (2) en faisant appel à des réactions d’addition de thiol-ène et de métathèse. Le développement de procédés de polycondensation en masse, a alors permis l’accès à de nouveaux polyesters hyper-ramifiés. La densité de ramifications ainsi que les propriétés thermo-mécaniques de ces matériaux ont été modulées par le choix adapté de la structure chimique des précurseurs ‘gras’ utilisés. Enfin, un travail exploratoire a été conduit concernant la post-fonctionnalisation du coeur comme de la périphérie de ces polyesters hyper-ramifiés dans le but de moduler leurs propriétés et ainsi d’étendre la portée de leurs applications, des plastiques de commodité aux matériaux avancés. / The aim of this thesis was to use vegetable oils as a platform for the design of more sustainable polyesters of hyperbranched architecture. For that purpose, the approach by polycondensation of ABn-type monomers (n ≥ 2) was favored. Plant oils and/or fatty acid methyl esters were chemically modified to synthesize multifunctional precursors featuring ester (A) and alcohol moieties (B). Simple, safe and efficient chemical transformations were considered to provide industrial perspectives to this work. Two main platforms of ABn-type monomers were developed by (1) acid hydrolysis of epoxidized vegetables oils and (2) thiol-ene/metathesis coupling reactions. The subsequent polycondensation of these oily-derived monomers, performed in bulk, gave access to novel renewable hyperbranched polyesters. The branching density as well as the thermo-mechanical properties of these materials were adjusted by designing and selecting the chemical structure of the fatty acid-based monomers. Finally, an exploratory work was carried out regarding the post-functionalization of both the core and the periphery of these hyperbranched polyesters with the aim at tuning their properties and thus opening the scope of their applications, from commodity plastics to advanced materials.
32

Optimization Of The Melt-Transetherification Polycondensation Route To Polyethers And Its Utilization For The Study Of Hyperbranched Polymers

Behera, Girish Chandra 12 1900 (has links) (PDF)
No description available.
33

Conformational Reorganization Of Hyperbranched And Linear Polymers And Functionalized Porous Polymer Films

Samuel, Ashok Zachariah 07 1900 (has links) (PDF)
The main focus of the research work presented in the thesis is the understanding of structural and conformational reorganizations in hyperbranched and linear polymers. The thesis includes three different investigations: a) the design, synthesis, conformational reorganizations and self-assembly of hyperbranched polymers (HBPs), b) the Raman spectroscopic studies of the melting of polyethylene glycol (PEG), and c) the preparation of functionalized porous polymer films. HBPs are structurally imperfect analogues of the defect-free branched polymers called dendrimers. Dendrimers prepared using a stepwise polymerization methodology will carry all the unreacted B groups at the periphery and therefore modification of these peripheral units with suitable linear segments (e.g. PEG) would naturally generate a core-shell structure. On the other hand, in the case of HBPs, that contain a large number of linear defects, the B groups are distributed throughout the highly branched backbone, and hence modification of these units may not generate a core-shell configuration. However, our earlier studies have demonstrated the unimolecular micelle type behavior (core-shell) of PEG-ylated aromatic HB polyethers in solution. Hence, even though the PEG segments are randomly placed throughout the HBP backbone, the polymer achieves a core-shell configuration through conformational reorganizations; this suggests that the core of HBPs may be flexible and adaptable. In order to further examine this issue, we have investigated the self-assembly of these PEG-ylated HBPs. These polymers were found to organize into uniform nano-aggregates (Figure 1). More interestingly, these aggregates were found to restructure on mica surface when exposed to solvent vapor. This study confirmed the formation of core-shell domains in the PEG-ylated HBPs and the ability of the HB core to reconfigure. Figure 1. Restructuring of nano-aggregates formed from PEG-ylated HBPs on mica surface. As mentioned earlier, the precise control of the placement of functional groups would be impossible in the case of hyperbranched polymers (HBPs); most approaches would result in random placement of the functional entities as the growth of the polymer occurs in a statistically governed manner. Hence, creating Janus hyperbranched structures appears a daunting task. Janus is the name given for facially amphiphilic systems, such as a sphere made by joining a hemisphere with a hydrophobic surface and one with a hydrophilic surface. Since we have demonstrated that the HBP backbone is adaptable, it would be interesting to test the possibility of generating a Janus configuration through reorganization of peripheral segments. Peripherally “clickable” HB polyesters were synthesized using the transesterification polymerization methodology. The peripheral groups were modified with two dissimilar segments, PEG and docosyl (C22 alkyl, DOCO) chains, by azide-yne click reaction using the corresponding azides. The immiscibility of the chains along with the tendency of alkyl chain to crystallize was expected to cause self-segregation of segments at the periphery aided by the reconfiguration of HB core. Melting transition associated with alkyl segments was evident in the DSC thermogram. In addition, the melting enthalpies, normalized with respect to the weight of alkyl segments, were close to that of the C22 alkyl chain for three HBPs with different compositions of DOCO and PEG. This suggests complete phase segregation of segments at the periphery. The behavior of these HBPs at the air-water interface was also investigated. In this experiment a single layer of molecules, deposited at the air-water interface, is compressed and decompressed at a predetermined rate. The surface pressure variation during the compression-decompression cycle reveals the molecular organization at the surface. Stable and reversible isotherms were obtained for these HBPs; which suggested their Janus nature with PEG chains solvated in water and alkyl chains projecting out into air. A change in slope was observed in the isotherm and we have ascribed this to the crystallization of docosyl segments. In order to verify the assignment, quasi-static compression (QSC) experiments were performed. In QSC experiment, the monolayer was rapidly compressed to a required surface area and the drop in surface pressure, as a function of time at this fixed surface area, was recorded. During the rapid compression the molecules may not have adequate time to organize optimally and therefore, holding the area constant often leads to a drop in surface pressure with time. The total pressure-drop after the compression reflects the extent of molecular reorganizations; this, for example, could be due to the crystallization of alkyl segments. In the present study, the extent of pressure drop scaled with the composition of alkyl chains; this proves the assignment and supports the self-segregation of the peripheral segments to generate a Janus configuration (Figure 2). AFM images of the transferred monolayer allowed the estimation of monolayer height, which was roughly in agreement with the expected single molecule dimension. Small angle X-ray scattering experiments (SAXS) on HBPs demonstrated existence of a lamellar morphology in the solid state. Janus structures may be expected to exist as bilayers in the solid state. As expected, the lamellar dimensions estimated were twice the monolayer height observed in AFM images. This confirms the bilayer structure and the Janus configuration of HBPs. We have also investigated the self-assembly of these Janus HBPs in solution and it was found that disk-like aggregates were formed in methanol, whereas vesicles were formed in water by systems that had the appropriate balance of hydrophilic and hydrophobic segments. Figure 2. a) The structure of Janus HBP. b) A cartoon depiction of reconfiguration of randomly functionalized HBP to Janus. c) DSC thermograms showing clear melting and crystallization peaks. d) Langmuir isotherms for Janus HBPs. The change in slope is indicated by orange arrow. e) Quasi-static compression isotherms. The extent of pressure drop for different HBPs (inset). f) The SAXS pattern suggesting lamellar structure in the solid state and a proposed model (inset). It was clear from the study that the incompatibility between segments is the primary reason for the reconfiguration. In order to test the generality of the approach, we have prepared two other types of HBPs: one with PEG and fluorocarbon (FC) and the other with DOCO and FC. These segments were chosen because of their mutual incompatibility. In both these systems, the formation of Janus configuration was similarly confirmed by DSC, SAXS and Langmuir isotherm studies. We have extended these studies to HBPs functionalized with three different immiscible segments (tripod HBPs) namely, PEG, DOCO and FC; in the case of PEG two different molecular weights were used: PEG350 and PEG1000; the latter exhibits a strong tendency to crystallize. Melting transition associated with each of the segments was observed in the DSC experiments. The normalized melting enthalpy of the docosyl domain was found to vary substantially depending on the composition and configuration of HBPs (Janus or tripod). Considering the variation of these values it was concluded that the presence of an immiscible amorphous segment, like PEG350, enhances the phase separation and crystallization of DOCO by providing more flexibility to the core. The presence of one or more immiscible but crystallizable segments (e.g. FC or PEG1000), on the other hand, lead to less effective crystallization. Interfacial behavior of the tripod HBPs, that carry the hydrophilic PEG units, were also studied using Langmuir trough. The tripod HBPs formed clear monolayer at the air-water interface at higher surface pressures (40 mN/m); where the hydrophobic segments, FC and DOCO, oriented away from water into air and PEG segments remained solvated in water. Due to the incompatibility between FC and DOCO, it may be anticipated that these segments also form phase segregated domains. While the AFM images allowed the estimation of monolayer thickness, these domains could not be resolved in the images. Interestingly, the transferred monolayer appeared smoother after thermal annealing. To investigate the reason, contact angle (CA) measurements were performed. It is widely accepted that the contact angle is very sensitive to the structure and chemistry of a few angstrom thick region of the top surface of a monolayer. The water CA on the monolayer before thermal annealing was 84˚ while it increased to 104˚ after annealing. This behavior was attributed to the effective phase segregation and crystallization of FC and DOCO domains. The crystallization causes CF3 end groups to orient normal to the surface and hence increases the water contact angle. The receding contact angle, on the other hand, was found to be substantially smaller (45˚); this large contact angle hysteresis could be indicative of chemical heterogeneity on the surface, and it has been suggested that the presence of small domains of low surface free energy could indeed result in such large contact angle hysteresis. Interestingly, when the film was aged under ambient conditions for 12 h, the contact angle dropped to the initial value of 84˚; re-annealing the film at 75˚C for 12 h again raised the contact angle back to 104˚. This reversible annealing-aging behavior reveals dynamic nature of the monolayer that permits gradual restructuring at the surface (Figure 3). Self-assembly of these tripod hybramers resulted in the formation of unique aggregated structures. Morphology of these aggregates, observed in AFM images, were different from those formed by Janus hybramers. These results provide a clear evidence for the segregation of all the three segments into individual domains -the hypothesized tripod hybramer configuration. Figure 3. AFM images of transferred monolayer of tripod HBP before and after thermal annealing. Contact angle (CA) measured on the corresponding monolayers are shown in the inset. A model proposed for explaining the variation in the appearance of the monolayer (image) and the CA is also provided in the figure. Effective phase segregation of FC and DOCO is proposed the reason for the change. Another interesting question we have investigated as a part of the thesis is the molecular mechanism of melting of PEG. Crystallization of polymer is hypothesized as polymer chains moving down the free energy landscape though sequence of conformational reorganizations into an ordered crystalline (lamellar) state. Such conformational reorganizations also occur during melting. We have attempted to probe conformational dynamics in PEG during its melting using Raman spectroscopy, polarized optical microscopy, DSC and DFT calculations. Single crystal X-ray and vibrational spectroscopic studies have demonstrated helical configuration of PEG chains in the solid state with a gauche O-C-C-O, trans C-C-O-C and trans C-O-C-C conformations. There are three ways in which the PEG-helix can change during heating; one where C-O single bond rotates, second where the C-C rotates and third where both rotate, but the barriers to these rotations are different, as was established by earlier NMR studies. The intensity ratio of two Raman bands, I2880/2850, was found to be sensitive to the configuration about O-C-C-O units along the polymer backbone. An invariant I2880/2850 ratio of ~0.78 was ascribed to the consistent C-C dihedral angle (gauche configuration) during melting. This agrees with the well-known “gauche effect” in ethylene glycol. Prominent spectral changes were also observed in the methylene rocking region (~800 cm-1). In order to gain insight into the new conformers formed during melting, we carried out Gaussian calculations using model conformers. Among helical models considered the heptamer and tetradecamer helix models were found to be most suitable for the solid state helical structure of PEG. The Gaussian calculations using different model conformers revealed that the Raman band at 810 cm-1 corresponds to CH2 rocking vibrations of the gauche C-C-O-C units along the polymer chain; while the band at ~1500 cm-1 region was characteristic of O-C-C-O trans conformer. This agrees with the earlier assignment of 1500 cm-1 band to CH2 scissoring vibrations of PEG in an all-trans configuration. Interestingly, no peak was observed in the 1500 cm-1 region of the Raman spectrum during melting of PEG, but new peaks appeared in the 810 cm-1 region (Figure 4). Hence, it was concluded that C-C bond rotation does not occur during melting of PEG. Thus, our study confirmed that C-O single bond rotation is the molecular mechanism of PEG melting. Figure 4. a) Raman spectra of PEG at different temperatures. b) helical model considered for the study. c) Comparison of the Raman spectrum of molten PEG (2) with calculated spectra of two different models. The dynamics of a system, where the successive changes occur as a function of external perturbation, can be studied using 2D correlation spectroscopy (2D-CoS). 2D-Raman Correlation spectroscopy was employed to study the molecular structural dynamics during the melting of PEG. Conventional rules of 2D-CoS were used to retrieve the order in which the vibrational bands respond to temperature. Vibration at 934 cm-1 corresponding to the amorphous domain of PEG solid state was found to respond to temperature first. As the temperature of the system rises, CH2 rocking (1280 cm-1), CH2 wagging (1472 cm-1) and CH2 scissoring (1124 cm-1) vibrations becomes active and this provides flexibility to the chain. As the polymer chain gains adequate energy (at particular temperature) bond rotation takes place resulting in the transformation of a few TGT segments to GGG segments. On increasing the temperature further more C-O bond rotations occur, leading to destruction of lamellar domains and eventually PEG melts. The final study presented in this thesis deals with the generation of functionalized porous polymer films. Condensation of water droplets during solvent evaporation from a polymer solution, under humid conditions, is known to generate uniformly porous polymer films. We have investigated the possibility of pore formation through water phase separation strategy (Figure 5). In the presence of added surfactants (SDS and CTAB in the present study), the interface of phase separated water droplets and the polymer would naturally become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. The size of the pores and their distribution were examined using AFM and IR imaging methods. We have demonstrated that the ATR-IR imaging is an efficient method for analyzing a few nanometer thick surface section of the polymer film (Figure 5e). It was observed that the presence of surfactant is important for the pore formation and irregular pore formation resulted in the absence of surfactant. In addition, both the surfactant concentration and the relative volume fraction of the surfactant solution were found to govern the size of the pores formed. Cloud point measurements suggested that the occurrence of surfactant facilitated the phase separation of water. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the inner surface of pores, exchange of the inorganic counter-ion, such as the sodium-ion of sodium dodecyl sulphate (SDS), with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface with confocal fluorescence microscopy (Figure 5f). Figure 5. Schematic depiction of a homogeneous polymer solution (sky blue) in THF–water; yellow lines with red dots depicts dissolved surfactant molecules. (b) Initial stages of water droplet formation that are stabilized by surfactants. At this stage some polymer precipitation may also occur at the interface (depicted by the dark ring around the droplet). (c) Some droplet coalescence and continued formation of new water droplets leads to a slightly broad size distribution (coalescence and redistribution could be retarded due to the high solution viscosity). (d) Complete removal of THF followed by water generates the internally functionalized porous structures. e) IR spectral Image of the porous film. f) confocal fluorescence image of the porous film where the inner surface was functionalized with Rhodamine B. (For figures pl refer the pdf file)
34

Wechselwirkung von dünnen Schichten aus HVZ Polyestern im wässrigen Medium mit Modellproteinen

Mikhaylova, Yulia 11 May 2006 (has links)
The dissertation work focuses on the whole route of material development starting from the investigations of properties of the initial (raw) HBPs to their applications. Each research step is given in a separate chapter to enhance attention to various aspects of the aim of the work. Thus, every chapter is started with an introduction. After that, the methods applied and experimental procedure are described. Next part tries to give the comprehensive description of the results obtained. At the end of the chapter, the main points are summarized. The Chapter 1 gives the theoretical description of the main experimental techniques used in this work. In Chapter 2 the chemical (chemical composition, purity, typical structure elements) and physical (glass transition temperature, the temperature of the maximum decomposition, the thermal stability at the high temperatures, molar mass, polydispersity and possible aggregation in solution) properties examined by different techniques of polymer analysis are described. The Chapter 3 is divided into three separate parts: In Chapter 3.1 the description of the formation and modification of inter- and intramolecular hydrogen bonds of hydroxyl terminated HBP is presented to reveal the information of hydroxyl groups re- and/or association due to the high temperatures applied. In Chapter 3.2 the nature of the solid-liquid interface of HBP thin films have been studied by different surface sensitive techniques with respect to further protein adsorption investigations. In Chapter 3.3 the strategy for the fabrication of surface attached carboxyl terminated HBP using "grafting to" technique is developed. The Chapter 4 consists of two parts: The first (theoretic) part outlines the basic principles of protein chemistry, factors influencing on the protein molecule stability in aqueous medium, the mechanism of protein adsorption and forces involved in the adsorption process. In the second part the combination of different in situ techniques was applied to obtain a comprehensive description of complex adsorption processes of protein molecules on different polymer surfaces.
35

Hyperbranched polyesters for polyurethane coatings: their preparation, structure and crosslinking with polyisocyanates

Pavlova, Ewa 18 October 2006 (has links)
In this work, hyperbranched aromatic polyesters-polyphenols based on 4,4-bis(4’ hydroxy¬phenyl)pentanoic acid (BHPPA) were prepared and, according to the authors knowledge, for the first time tested as precursors for polyurethane bulk resins and coatings. Comparison of poly-BHPPA with competing products The materials prepared in this work show better properties than their aliphatic polyester-polyol analoga based on 2,2-bis-(hydroxymethyl)propanoic acid (BHMPA). Especially, the solubility of poly-BHPPA in organic solvents is better and poly-BHPPAs also do not tend to microphase separation during their reaction with isocyanates, in contrast to poly-BHMPAs. The poly-BHPPA and the polyurethane networks made from them display higher Tg values than analogous poly- BHMPA compounds. Because of the high Tg of the reacting and final systems, curing must occur at elevated temperatures (90°C) in order to avoid undercure. The lower reactivity of phenolic OH groups prevents the reaction from being too fast at that temperature. A drawback of the polyurethanes based on the aromatic polyesters-polyols prepared is the lower thermal stability of their urethane bonds, if compared to aliphatic urethanes. An interesting possibility for future investigations would be the modification of the BHPPA monomer in order to change the OH functionality from phenolic to aliphatic OH, e.g. by replacement of the phenolic OH by hydroxymethyl or hydroxyethyl groups (requires a strong modification of the monomer synthesis) or simpler by reacting the phenolic OH of BHPPA with a suitable reagent like oxirane, which would lead to groups like O-CH2-CH2-OH in the place of the phenolic OH. Such a BHPPA modification should in turn yield modified “poly-BHPPA” polycondensates, which would combine the advantages of poly-BHPPA with those of aliphatic OH precursors of polyurethanes. Poly-BHPPA synthesis Hyperbranched polymers of the 4,4-bis-(4’-hydroxyphenyl)pentanoic acid (BHPPA) were synthesized successfully by the catalyzed (by dibutyltin diacetate) polycondensation of BHPPA. The products obtained were oligomers with number average molecular weight ranging from 1800 to 3400 g/mol (polymerization degree of ca. 6 to 12), displaying a first moment of functionality in the range 7 to 14. Such products were good OH precursors for the preparation of polyurethane coatings, because higher functional polymers would gel at low conversions. The analysis of the functional groups (determination of acid and hydroxyl numbers) and the 1H-NMR and the 13C-NMR spectroscopy were found to be good methods for the determination of molecular weights. The polydispersity of the poly-BHPPA products was in the range 3.5 to 6. Their degree of branching was found to be in the range 0.36 to 0.47. Poly-BHPPA containing aliphatic polyols as core monomers were also prepared successfully. Difunctional and trifunctional core monomers usually reached a full conversion of their OH groups, while the tetra- and hexafunctional core monomers were converted only to 89%. In all these products however, a considerable amount, usually even a majority, of the polymer molecules were core free. The poly-BHPPA products prepared displayed relatively high glass transition temperatures, in the range of 84°C to 114°C, obviously due to interactions between the phenol groups and to hydrogen bridging. The thermal stability of these products was also high, with decomposition occurring near 350°C (at a heating rate of 10°C / min) Kinetics investigations of the poly-BHPPA reactivity towards isocyanates The poly-BHPPA are polyphenols and were expectedly found to react significantly slower with isocyanates than aliphatic alcohols. The reactivity of poly BHPPA was also found to be somewhat lower than that of the monofunctional, low molar-mass 4 ethylphenol. Hexamethylene diisocyanate trimer, Desmodur N3300, was found to be more reactive than hexamethylene diisocyanate (HDI) or butyl isocyanate in all experiments, possibly due to a substitution effect. The substitution effect can be explained by a change of microenvironment caused by conversion of isocyanate group and OH group into urethane groups. The reactions of low-molecular-mass alcohols or phenols with low molecular weight isocyanates followed well the 2nd order kinetics, while the reactions of poly-BHPPA with isocyanates show deviations from ideal 2nd order kinetics at higher conversions. All the kinetics experiments were carried out under catalysis by dibutyltin dilaurate. This catalyst inhibits the undesired reaction of isocyanate groups with moisture. It was also found that the catalysis was necessary to reach reasonable curing times for poly-BHPPA based polyurethane networks. The uncatalyzed systems reacted extremely slowly. Preparation of polyurethane networks from poly-BHPPA The poly BHPPA products prepared were used successfully as OH functional precursors of polyurethane networks. The networks prepared contained only very low sol fractions. Acetone and also ethylene diglycol dimethylether (diglyme) were found to be good swelling solvents for the networks prepared, while methyl propyl ketone was a much poorer solvent and aromatic compounds like toluene or xylene practically did not swell the poly BHPPA based polyurethanes. The networks prepared contain a relatively high amount of cyclic bonds, 40 to 50% in the finally cured state, which is an expected result for systems with precursors of high functionality and with small distances between the functional groups. The temperature of glass transition (Tg) of the networks prepared (ranging from 68°C to 126°C) depends of the poly BHPPA precursor used: it increases with increasing molecular mass and with increasing core functionality. The choice of the isocyanate crosslinker also influences Tg: the networks made from HDI show higher Tg values, than networks made from the same poly BHPPA but crosslinked with Desmodur N3300 (Tri HDI). The urethane bonds in the networks prepared start to decompose near 140°C. The easier degradation of PU with aromatic urethane bonds is a disadvantage in comparison with aliphatic polyurethanes, whose decomposition starts at 200°C. The surfaces of polyurethane coatings prepared are smooth, displaying a roughness of ca. 20-25 nm, and relatively hydrophilic: the contact angle with water was found to be near 80°. The prepared networks are also relatively hard, possessing the Shore D hardness of 70.
36

Hyperstern-Polymere mit hochverzweigten Kernen und polaren Armen - Ihre Synthese, Charakterisierung und Anwendung als Reaktivbinder in Epoxy-basierten Photo- und Thermolacken

Däbritz, Frank 17 October 2011 (has links)
Diese Dissertation beschreibt die Synthese und Charakterisierung neuartiger Hyperstern-Polymere (HSP) und deren Funktion als Reaktivbinder in Epoxy- bzw. PUR-Harzen. Hyperstern-Polymere sind Hybride aus hochverzweigten (hvz) und linearen Polymeren. Sie können über ihre reaktiven OH-Gruppen als multifunktionelle hochverzweigte Quervernetzer kovalent in ein kationisch härtendes Epoxyharz einbinden und thermische sowie thermomechanische Eigenschaften verbessern.:Theoretischer Teil Einleitung und Aufgabenstellung Grundlagen 1 Polymeraufbau 1.1. Radikalische Polymerisationen 1.1.1. Kontrolliert radikalische Polymerisation 1.1.2. NMRP 1.1.3. ATRP 1.1.4. RAFT 1.2. Anionische Polymerisation 1.3. Kationische Polymerisation 1.3.1. CROP von Oxazolinen 1.4. Koordinative Polymerisationen 2 Verzweigte Polymerarchitekturen 2.1. Dendritische Polymere 2.1.1. Dendrimere 2.1.2. Hochverzweigte Polymere 2.1.2.1 SCVP 2.1.3. Dendrigrafts 2.1.4. Dendronisierte Polymere 2.2. Spezielle Polymerarchitekturen 2.2.1. Hyperstern-Polymere (HSP) 3 Lacke 3.1. Lösungsmittelhaltige Lacke 3.1.1. Chemisch härtende Lacke 3.1.2. Physikalisch trocknende Lacke 3.2. Wässrige Lacke 3.3. Lösungsmittelfreie Lacke 3.3.1. Strahlenhärtende Lacke 3.3.2. Pulverlacke 3.4. Aliphatische Epoxylacke 3.4.1. UV-Härtung 3.4.2. Thermische Härtung 3.4.3. Thermische Härtung klassischer 2K-Polyepoxid-Lacke 3.5. 2K-PUR-Lacke 3.6. Aktuelle Herausforderungen 3.7. Wissenschaftliche Konzepte zur Schlagzähmodifizierung von Lacken Diskussion und Ergebnisse 4 Synthese hochverzweigter Makroinitiatoren 4.1. Polyester-Makroinitiatoren PE-MI1 und PE-MI2 4.1.1. Polyester-Kern (PE-OH) 4.1.2. Makroinitiatoren für die Oxazolinpolymerisation (PE-MI1) 4.1.3. Makroinitiatoren für die ATRP von Methacrylaten (PE-MI2) 4.2. Poly(vinylbenzylchlorid)-Makroinitiator (PVBC) 5 Hypersterne mit POxa-Armen 5.1. Lineare Polyoxazolin-Modellverbindungen (POxa) 5.1.1. Test der Initiatorfunktionen 5.1.2. Einfluss der Mikrowelle 5.1.3. Terminierung (Capping) 5.1.4. Polymerisation OH-tragender Oxazoline 5.1.5. Adamantan-funktionalisierte Polyoxazoline 5.2. Hypersterne aus Polyester-Kern sowie Polyoxazolin-Armen: PE-g-POxa 5.2.1. Einführung von OH-Gruppen über die Terminierung 5.2.2. Einführung von OH-Gruppen über die Wiederholeinheiten 5.3. Hypersterne aus Polyvinylbenzylchlorid-Kern sowie Polyoxazolin-Armen: PVBC-g-POxa 5.3.1. Modellinitiatoren 5.3.2. Einführung von OH-Gruppen über die Wiederholeinheiten 5.4. Ausblick: Arm first-Strategie 6 Hypersterne mit Polymethacrylat-Armen 6.1. Hypersterne aus Polyvinylbenzylchlorid-Kern sowie Polymethacrylat-Armen: PVBC-g-PHEMA 6.2. Hypersterne aus Polyester-Kern sowie Polymethacrylat-Armen: PE-g-(PMMA-b-HEMA) 7 Hypersterne als Quervernetzer-Additive in Lacken 7.1. PVBC-g-POxa in Epoxyharz 7.1.1. Thermische Härtung 7.2. PE-g-P(MMA-b-HEMA) in Epoxyharz 7.2.1. UV-Härtung 7.2.2. Thermische Härtung 7.3. PE-g-P(MMA-b-HEMA) in 2K-PUR-Harz Zusammenfassung – Ausblick Experimenteller Teil 8 Geräte, Methoden und Chemikalien 9 Synthesen 9.1. Monomere, Capper, Niedermolekulare Substanzen 9.2. Lineare Polyoxazoline 9.2.1. Niedermolekulare CROP-Initiatoren 9.2.2. Lineares Poly(2-methyloxazolin) (PMeOxa) 9.2.3. Adamantan-funktionalisierte Poly(2-methyloxazoline) 9.2.4. Lineare Poly(2-ethyloxazoline) 9.2.5. NMR-Modellverbindungen für PVBC-Kern 9.3. Hochverzweigte Polymere und Makroinitiatoren 9.4. Hyperstern-Polymere mit POxa-Armen 9.5. Hyperstern-Polymere mit PAlkMA-Armen 9.6. Lackproben Abkürzungsverzeichnis Literaturverzeichnis Publikationsliste
37

Complexation Properties of Maltosylated Hyperbranched Poly(ethylene imine)s in Solution and in Functional Hydrogels

Polikarpov, Nikita 11 December 2012 (has links)
Hyperbranched poly(ethylene imine) with Mw 5,000 and 25,000 Da and different degrees of substitution with maltose (PEI-Mal) was firstly described by Appelhans et al. Its biocompatibility and the potential to complex anionic molecules was demonstrated previously. In this study, the characterisation of host-guest interactions of PEI-Mal with various anionic water-soluble guest molecules with aromatic moieties in the structure (adenosine triphosphate, rose bengal, and acid red 26) in solution was provided. Also, a multicomponent drug@PEI-Mal@hydrogel system was achieved.
38

Hochverzweigte Polyphenylene als Matrixmaterial für nanoporöse Isolatorsysteme mit niedriger Dielektrizitätskonstante

Stumpe, Katrin 03 April 2008 (has links)
Neue nanoporöse Materialien mit niedrigen Dielektrizitätskonstanten werden in der Mikroelektronik dringend benötigt. Eine Methode, die Dielektrizitätskonstante eines gegebenen Materials weiter zu reduzieren, ist die Einführung von geschlossenen und luftgefüllten Poren im Nanometerbereich. Die Porosität wird durch die Verwendung eines Zweikomponentensystems bestehend aus einer stabilen Matrix und einem labilen Porenbildner eingeführt; aus diesen wird ein Blend hergestellt, und durch anschließende Zersetzung des Porenbildners entsteht ein poröses Matrixpolymer mit stabilen Aushöhlungen. Im Vordergrund dieser Arbeit stand die Synthese und Charakterisierung hochverzweigter Polyphenylene über die Diels-Alder-Reaktion von phenylierten Cyclopentadienonen mit phenylierten Alkinen zur Verwendung als Matrixmaterialien in nanoporösen Isolatorsystemen. Dabei wurde sowohl von A2- und B3-Monomeren als auch von AB2- und AB-Monomeren ausgegangen. Die hochverzweigten Polyphenylene sind vielversprechende Materialien mit hervorragenden isolierenden und chemischen Eigenschaften wie hohen thermischen Stabilitäten und guten Löslichkeiten in organischen Lösungsmitteln, was eine wichtige Voraussetzung für die Verwendung der Polymere in der Mikroelektronik darstellt. Die verschiedenen Syntheseansätze erlauben dabei eine Kontrolle über die Endgruppen und die Verzweigung. Daneben wurden thermolabile hochverzweigte Polycarbonate und Polytriazenester als Porenbildner synthetisiert und mit Silylether-Endgruppen modifiziert, wobei mit der tert-Butyldiphenylsilyl-Gruppe die besten Ergebnisse bezüglich der Mischbarkeit mit der Polyphenylenmatrix erhalten wurden. Außerdem wurden Blends in Form von dünnen Schichten aus den hochverzweigten Polyphenylenen mit den Porenbildnern im Hinblick auf die potentielle Anwendung der Materialien als nanoporöse Isolatoren charakterisiert.
39

Einfluss der Verzweigung, Terminierung und Immobilisierung auf die Eigenschaften dünner Polyesterschichten

Reichelt, Senta 26 September 2008 (has links)
Die vorliegende Arbeit liefert einen Beitrag zum Verständnis der komplexen Struktur-/Eigenschaftsbeziehungen dünner Schichten hochverzweigter Polyester. Für die umfassende Charakterisierung wurde eine Vielzahl analytischer Methoden kombiniert. Des Weiteren wurde das Anwendungspotential dieser Schichten hinsichtlich möglicher Sensoranwendung anhand der Adsorption von Modellproteinen gewichtet. Dazu war es notwendig verschieden Methoden zur Stabilisierung dieser Schichten zu entwickeln.
40

Synthesis and characterization of fluorinated linear and (hyper)branched (co)polymers via self-condensing vinyl polymerization (SCVP) in minimeulsion

Shaaban, Ahmad Mohammad Ragab 02 July 2019 (has links)
No description available.

Page generated in 0.0539 seconds