• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • Tagged with
  • 12
  • 12
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

FE-Modellierung von Elastomerkomponenten mit textilen Verstärkungscorden am Beispiel von Luftfedern

Heinrich, Nina 27 May 2021 (has links)
Neben Reifen, Riemen und Schläuchen zählen speziell auch die Balgwände von Luftfedern zu den Kompositen, da deren weiche Elastomermatrix zur Verstärkung Gewebelagen aus textilen Corden enthält. Diese Verstärkungsträger bestehen aus miteinander verzwirnten Garnen, die ihrerseits einen Zwirn aus polymeren Filamenten darstellen. Luftfederbälge weisen dementsprechend eine hochkomplexe innere Geometrie auf und sind zudem durch stark anisotropes, nichtlineares Materialverhalten gekennzeichnet. Für die strukturmechanische Simulation von Luftfedern mit der Finite-Elemente-Methode (FEM) werden in der vorliegenden Arbeit neuartige, hochauflösende Modelle entwickelt, die diesen Eigenschaften Rechnung tragen. Zunächst wird ein mathematisches Modell formuliert, das die verzwirnte Geometrie von Corden auf allgemeinen räumlichen Bahnkurven beschreibt und mithilfe dessen sich auch die lokale Orientierung der Filamente bestimmen lässt. Zur konstitutiven Modellierung des Filamentmaterials wird zudem ein transversal isotropes, hyperelastisches Materialmodell so modifiziert, dass bei Druckbelastung in Filamentrichtung nur noch die der Regularisierung dienende, isotrope Grundsteifigkeit zum Tragen kommt. Das Geometriemodell der Corde ist die Basis für deren dreidimensionale Abbildung in FE-Netzen von Luftfederbälgen. Als erster Schwerpunkt wird ein auf zyklischer Symmetrie basierendes Streifenmodell entwickelt, das die Cordgeometrie im gesamten Balg vollständig auflöst. Ein besonderes Augenmerk gilt dabei der Generierung konformer Netze, um die Grenzflächen zwischen Matrix und Corden exakt darzustellen. Das Streifenmodell ermöglicht somit detaillierte Analysen zur lokalen Verteilung von Spannungen und Verzerrungen im Inneren der Balgwand. Als zweiter Schwerpunkt wird diese Art der Modellierung auf einen kleinen rechteckigen Ausschnitt der Balgwand übertragen. Dieser Teppich ist als Submodell konzipiert, das Verschiebungen für seine Schnittränder aus einem vereinfachten Globalmodell bezieht und demzufolge die Analyse allgemeiner, nicht axialsymmetrischer Lastfälle möglich macht. Abschließend werden die Modelle anhand einer Rollbalgluftfeder für Busanwendungen eingehend untersucht und einem Praxistest zum Vergleich zweier Konstruktionsvarianten unterzogen. / Tires, belts, hoses and, in particular, air spring bellows are regarded as composites due to layers of reinforcing textile cords that are embedded in a soft elastomer matrix. These cords are produced by twisting yarns which, for their part, represent a twisted structure of polymeric filaments. Hence, air spring bellows feature a highly complex internal geometry as well as strongly anisotropic, nonlinear material behavior. For structural simulations of air springs by means of the finite element method (FEM), new high resolution models are developed here, which reflect all the aforementioned properties. At first, a mathematical model capable of representing the twisted geometry of cords on three-dimensional curves is introduced, which also allows to derive local filament orientations. For the constitutive description of filament material, a transversally isotropic, hyperelastic material model is modified so that only the small isotropic stiffness introduced for regularization remains in case of compressive loads in filament direction. The cord geometry model serves as the basis for their three-dimensional representation in FE meshes of air spring bellows. Firstly, the focus lies on developing a slice model relying on cyclic symmetry, which takes cord geometry into account throughout the entire bellows. Special emphasis is put on building conforming meshes in order to incorporate all material interfaces explicitly. As a result, the slice model allows for detailed analyses of local stress and strain distribution inside the bellows. Secondly, this type of modeling is applied to a rectangular section of the bellows. This carpet is conceived as a submodel acquiring the displacements to be imposed on its cut faces from a simplified global model, and therefore provides the opportunity to analyze general load cases not complying with axial symmetry. Based on a rolling lobe air spring used in bus applications, both models are examined thoroughly and, at last, subjected to a practical test comparing two different designs.
12

Contributions to the Simulation and Optimization of the Manufacturing Process and the Mechanical Properties of Short Fiber-Reinforced Plastic Parts

Ospald, Felix 16 December 2019 (has links)
This thesis addresses issues related to the simulation and optimization of the injection molding of short fiber-reinforced plastics (SFRPs). The injection molding process is modeled by a two phase flow problem. The simulation of the two phase flow is accompanied by the solution of the Folgar-Tucker equation (FTE) for the simulation of the moments of fiber orientation densities. The FTE requires the solution of the so called 'closure problem'', i.e. the representation of the 4th order moments in terms of the 2nd order moments. In the absence of fiber-fiber interactions and isotropic initial fiber density, the FTE admits an analytical solution in terms of elliptic integrals. From these elliptic integrals, the closure problem can be solved by a simple numerical inversion. Part of this work derives approximate inverses and analytical inverses for special cases of fiber orientation densities. Furthermore a method is presented to generate rational functions for the computation of arbitrary moments in terms of the 2nd order closure parameters. Another part of this work treats the determination of effective material properties for SFRPs by the use of FFT-based homogenization methods. For these methods a novel discretization scheme, the 'staggered grid'' method, was developed and successfully tested. Furthermore the so called 'composite voxel'' approach was extended to nonlinear elasticity, which improves the approximation of material properties at the interfaces and allows the reduction of the model order by several magnitudes compared to classical approaches. Related the homogenization we investigate optimal experimental designs to robustly determine effective elastic properties of SFRPs with the least number of computer simulations. Finally we deal with the topology optimization of injection molded parts, by extending classical SIMP-based topology optimization with an approximate model for the fiber orientations. Along with the compliance minimization by topology optimization we also present a simple shape optimization method for compensation of part warpage for an black-box production process.:Acknowledgments v Abstract vii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Nomenclature 3 Chapter 2. Numerical simulation of SFRP injection molding 5 2.1 Introduction 5 2.2 Injection molding technology 5 2.3 Process simulation 6 2.4 Governing equations 8 2.5 Numerical implementation 18 2.6 Numerical examples 25 2.7 Conclusions and outlook 27 Chapter 3. Numerical and analytical methods for the exact closure of the Folgar-Tucker equation 35 3.1 Introduction 35 3.2 The ACG as solution of Jeffery's equation 35 3.3 The exact closure 36 3.4 Carlson-type elliptic integrals 37 3.5 Inversion of R_D-system 40 3.6 Moment tensors of the angular central Gaussian distribution on the n-sphere 49 3.7 Experimental evidence for ACG distribution hypothesis 54 3.8 Conclusions and outlook 60 Chapter 4. Homogenization of SFRP materials 63 4.1 Introduction 63 4.2 Microscopic and macroscopic model of SFRP materials 63 4.3 Effective linear elastic properties 65 4.4 The staggered grid method 68 4.5 Model order reduction by composite voxels 80 4.6 Optimal experimental design for parameter identification 93 Chapter 5. Optimization of parts produced by SFRP injection molding 103 5.1 Topology optimization 103 5.2 Warpage compensation 110 Chapter 6. Conclusions and perspectives 115 Appendix A. Appendix 117 A.1 Evaluation of R_D in Python 117 A.2 Approximate inverse for R_D in Python 117 A.3 Inversion of R_D using Newton's/Halley's method in Python 117 A.4 Inversion of R_D using fixed point method in Python 119 A.5 Moment computation using SymPy 120 A.6 Fiber collision test 122 A.7 OED calculation of the weighting matrix 123 A.8 OED Jacobian of objective and constraints 123 Appendix B. Theses 125 Bibliography 127 / Diese Arbeit befasst sich mit Fragen der Simulation und Optimierung des Spritzgießens von kurzfaserverstärkten Kunststoffen (SFRPs). Der Spritzgussprozess wird durch ein Zweiphasen-Fließproblem modelliert. Die Simulation des Zweiphasenflusses wird von der Lösung der Folgar-Tucker-Gleichung (FTE) zur Simulation der Momente der Faserorientierungsdichten begleitet. Die FTE erfordert die Lösung des sogenannten 'Abschlussproblems'', d. h. die Darstellung der Momente 4. Ordnung in Form der Momente 2. Ordnung. In Abwesenheit von Faser-Faser-Wechselwirkungen und anfänglich isotroper Faserdichte lässt die FTE eine analytische Lösung durch elliptische Integrale zu. Aus diesen elliptischen Integralen kann das Abschlussproblem durch eine einfache numerische Inversion gelöst werden. Ein Teil dieser Arbeit leitet approximative Inverse und analytische Inverse für spezielle Fälle von Faserorientierungsdichten her. Weiterhin wird eine Methode vorgestellt, um rationale Funktionen für die Berechnung beliebiger Momente in Bezug auf die Abschlussparameter 2. Ordnung zu generieren. Ein weiterer Teil dieser Arbeit befasst sich mit der Bestimmung effektiver Materialeigenschaften für SFRPs durch FFT-basierte Homogenisierungsmethoden. Für diese Methoden wurde ein neuartiges Diskretisierungsschema 'staggerd grid'' entwickelt und erfolgreich getestet. Darüber hinaus wurde der sogenannte 'composite voxel''-Ansatz auf die nichtlineare Elastizität ausgedehnt, was die Approximation der Materialeigenschaften an den Grenzflächen verbessert und die Reduzierung der Modellordnung um mehrere Größenordnungen im Vergleich zu klassischen Ansätzen ermöglicht. Im Zusammenhang mit der Homogenisierung untersuchen wir optimale experimentelle Designs, um die effektiven elastischen Eigenschaften von SFRPs mit der geringsten Anzahl von Computersimulationen zuverlässig zu bestimmen. Schließlich beschäftigen wir uns mit der Topologieoptimierung von Spritzgussteilen, indem wir die klassische SIMP-basierte Topologieoptimierung um ein Näherungsmodell für die Faserorientierungen erweitern. Neben der Compliance-Minimierung durch Topologieoptimierung stellen wir eine einfache Formoptimierungsmethode zur Kompensation von Teileverzug für einen Black-Box-Produktionsprozess vor.:Acknowledgments v Abstract vii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Nomenclature 3 Chapter 2. Numerical simulation of SFRP injection molding 5 2.1 Introduction 5 2.2 Injection molding technology 5 2.3 Process simulation 6 2.4 Governing equations 8 2.5 Numerical implementation 18 2.6 Numerical examples 25 2.7 Conclusions and outlook 27 Chapter 3. Numerical and analytical methods for the exact closure of the Folgar-Tucker equation 35 3.1 Introduction 35 3.2 The ACG as solution of Jeffery's equation 35 3.3 The exact closure 36 3.4 Carlson-type elliptic integrals 37 3.5 Inversion of R_D-system 40 3.6 Moment tensors of the angular central Gaussian distribution on the n-sphere 49 3.7 Experimental evidence for ACG distribution hypothesis 54 3.8 Conclusions and outlook 60 Chapter 4. Homogenization of SFRP materials 63 4.1 Introduction 63 4.2 Microscopic and macroscopic model of SFRP materials 63 4.3 Effective linear elastic properties 65 4.4 The staggered grid method 68 4.5 Model order reduction by composite voxels 80 4.6 Optimal experimental design for parameter identification 93 Chapter 5. Optimization of parts produced by SFRP injection molding 103 5.1 Topology optimization 103 5.2 Warpage compensation 110 Chapter 6. Conclusions and perspectives 115 Appendix A. Appendix 117 A.1 Evaluation of R_D in Python 117 A.2 Approximate inverse for R_D in Python 117 A.3 Inversion of R_D using Newton's/Halley's method in Python 117 A.4 Inversion of R_D using fixed point method in Python 119 A.5 Moment computation using SymPy 120 A.6 Fiber collision test 122 A.7 OED calculation of the weighting matrix 123 A.8 OED Jacobian of objective and constraints 123 Appendix B. Theses 125 Bibliography 127

Page generated in 0.0405 seconds