Spelling suggestions: "subject:"hypothalamic pituitary adrenal axis"" "subject:"ypothalamic pituitary adrenal axis""
21 |
Cortisol perturbation in the pathophysiology of septicaemia, complicated pregnancy and weight loss/obesity.Ho, Jui Ting. January 2007 (has links)
Cortisol, the principal glucocorticoid secreted from the adrenal glands, is essential for life. Healthy cortisol levels are maintained through negative feedback on the central nervous system (CNS) – pituitary stimulatory apparatus which regulates production of adrenocorticotropin (ACTH) and contains a light–entrained intrinsic CNS driven diurnal rhythm. Cortisol participates in a regulatory mechanism where inflammatory cytokines stimulate cortisol release and cortisol in turn suppresses cytokine release. The effects of cortisol in inflammatory states include elevating blood pressure and metabolic regulation. This thesis contains three exploratory studies examining circulating cortisolaemia using the best available methodologies (total and free cortisol and corticosteroid-binding globulin (CBG)) in clinical states characterized by immune activation/ inflammation and altered blood pressure. These clinical states include: (1) septic shock, (2) hypertensive disorders of pregnancy and (3) obesity-induced hypertension. Prior to the studies described here, little was know about cortisolaemia in these common pathological states. Septic shock is a life threatening condition that complicates severe infection and is characterized by systemic inflammation and refractory hypotension. High plasma total cortisol levels and attenuated responses to synthetic ACTH stimulation are associated with increased mortality. The use of corticosteroids in septic shock has been highly controversial for decades, however recent trials have reported haemodynamic and survival benefits associated with the use of physiologic steroid replacement in patients with relative adrenal insufficiency (RAI) – currently defined as a total cortisol increment of 248 nmol/L or less following ACTH (250 μg) stimulation. However, CBG and albumin levels fall by around 50% with an increase in plasma free cortisol in critical illness. Hence, total cortisol may not reflect the biologically active free (unbound) cortisol, suggesting that standard assays for plasma cortisol (which measure total plasma cortisol) underestimate HPA axis activity. In this study, we have showed that plasma free cortisol is a better guide to circulating glucocorticoid activity in systemic infection than total cortisol. We have also validated the use of Coolens’ method in estimating free cortisol in systemic infection, using plasma total cortisol and CBG measurements as plasma free cortisol is not performed in clinical laboratories. Free cortisol measurement allows better categorization of RAI and non-RAI groups with a free cortisol increment of 110 nmol/L as cut-off. Moreover, we have shown that survivors of RAI have normal adrenocortical function on follow-up testing suggesting a lack of functional adrenal reserve rather than adrenal damage during critical illness. Larger randomized controlled trials will be required to redefine RAI using free cortisol measurements and relate that to clinical outcomes and responses to corticosteroid therapy. Nitric oxide (NO) is normally produced in the endothelium by the constitutive form of the NO synthase and this physiologic production is important for blood pressure regulation and blood flow distribution. Studies have shown that an overproduction of NO by the inducible form of NO synthase (iNOS) may contribute to the hypotension, cardiodepression and vascular hyporeactivity in septic shock. Clinical studies of non-selective inhibitors of the L-arginine nitric oxide pathway showed increased mortality from cardiovascular complications. However, glucocorticoids, which improve vasopressor sensitivity, may act by partially suppressing NO synthesis through selective direct inhibition of iNOS, and suppression of inflammatory cytokine synthesis. Hence, plasma nitrate/ nitrite (NOx) levels may provide a titratable end point to individualize glucocorticoid therapy in sepsis. The NOx study in this thesis showed that cortisol (total and free), CBG and NOx correlated to illness severity. Free cortisol, and to a lesser extent total cortisol, but not NOx levels, predicted septic shock. NOx levels were characteristically stable within individuals but inter-individual differences were only partly accounted for by illness severity or renal dysfunction. NOx levels correlated weakly with cortisol, did not relate to the need for vasopressors and were not suppressed by hydrocortisone treatment. Thus, NOx is not a suitable target for glucocorticoid therapy in septic shock. Pregnancy is the only sustained physiologic state of hypercortisolism in humans. A large body of data suggests that excessive foetal and prenatal glucocorticoid exposure leads to reduced birth weight and adverse health in offspring such as elevated blood pressure and insulin resistance. Pre-eclampsia and gamete donor pregnancies are associated with immune activation, elevated inflammatory cytokines as well as elevated blood pressure. Prior to the study described in this thesis however, there was no prospective data on maternal cortisolaemia in these complicated pregnancies. My study has demonstrated for the first time that there was a substantial fall in plasma CBG levels in the last few weeks of gestation with a corresponding rise in free cortisol in normal pregnancy, a finding obscured for methodological reasons in past studies. This free cortisol elevation in late pregnancy may facilitate organ maturation in the foetus and perhaps prepare the mother for the metabolic demands of labour. In pre-eclampsia and gestational hypertension, plasma CBG, total and free cortisol levels were lower in late third trimester; and in IUGR, plasma CBG levels were suppressed from 28 weeks gestation until delivery but with no significant difference in plasma total and free cortisol. Women with assisted reproduction using donor gametes/ embryos had significantly lower plasma CBG, total and free cortisol levels even in those with normal pregnancy outcomes. Low CBG may be due to reduced synthesis or enhanced inflammation-driven degradation. Low maternal cortisol may be due to a lack of placental corticotropin-releasing hormone, or reduced maternal ACTH, driving cortisol production. This unanticipated maternal hypocortisolism in complicated pregnancies may trigger precocious activation of the foetal HPA axis and could have implications for postnatal and adult health. Speculatively, since excess prenatal GCs increase HPA axis activity, we proposed that maternal hypocortisolism may predispose to the hypocortisolaemic state characterized by fatigue, pain and stress sensitivity, in offspring. The third state of immune/ inflammatory activation associated with blood pressure dysregulation studied in this thesis is obesity. The epidemiologic relationship between obesity and hypertension is widely recognised. Central obesity in particular has been associated with exaggerated HPA responses to stimuli. Studies of severe dieting and starvation resulted in hypercortisolism and a significant decrease in CBG. The HPA axis and the renin-angiotensin-aldosterone system (RAAS) have been implicated in the pathophysiology of obesity-induced hypertension. However, there is little data on the effect of moderate weight loss (30% caloric restriction) on adrenocortical function, and the relation of adrenal hormones to altered blood pressure with weight loss. In this study, measures of HPA axis and RAAS and blood pressure monitoring were performed in twenty-five obese subjects before and after a 12-week diet program (6000kJ/day). Short-term, moderate weight loss (mean 8.5 kg) was associated with a small reduction in blood pressure (mean arterial pressure 6 mmHg) and significantly reduced levels of aldosterone and renin but not cortisol levels. These findings suggest that aldosterone may have an important role in the blood pressure reduction with weight loss via a renin mediated mechanism, perhaps involving renal sympathetic tone. In contrast to severe caloric restriction, HPA axis activation does not occur with moderate weight loss. This suggests a threshold effect of weight loss on the HPA axis where greater caloric restriction is required for HPA stimulation, or a counterbalancing of central and direct adrenal effects on HPA axis function. Overall, these three exploratory studies have provided novel data on HPA axis function in systemic infection, pregnancy and in diet-induced weight loss. Each study offers a basis for further studies of HPA axis function in these disorders. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1289330 / Thesis(Ph.D.)-- School of Medicine, 2007.
|
22 |
Effect of two glucocorticoid-inducible proteins on human fibroblast-like synoviocytesSampey, Annaleise,1972- January 2001 (has links)
Abstract not available
|
23 |
Maternal undernutrition and fetal blood pressure and the hypothalamo-pituitary adrenal axis in the late gestation fetal sheepEdwards, Lisa J. January 2001 (has links) (PDF)
Includes bibliographical references (leaves 228-257). Aims to determine the impact of maternal undernutrition during late gestation and during the periconceptional and gestational periods on fetal growth, fetal blood pressure and the fetal hypothalamo-pituitary adrenal axis in the sheep.
|
24 |
Role of hypothalamic pituitary adrenal axis in prenatal programming of adult disease.Grover, Sanita January 2008 (has links)
Low birth weight is associated with an increased risk of impaired glucose tolerance and type 2 diabetes and with signs of increased hypothalamic pituitary adrenal axis activity in later life (1, 2). Low birth usually weight reflects a reduction in fetal growth, which largely depends on an adequate supply of nutrients and oxygen. Variations in supply modify the metabolic and neuroendocrine characteristics of the fetus, which in turn modulate the pattern of functional development as well as growth (3). An adverse fetal environment, evident as low birth weight, is therefore proposed to alter functional development with long term effects for the function and risk of disease in the individual later in life (4, 5). Increased HPAA impairs metabolic homeostasis and could therefore mediate effect of prenatal challenge on later metabolic control (6). It was therefore hypothesised that restriction of fetal growth, increases circulating cortisol and/or alters sensitivity to cortisol, which increases fasting blood glucose, and impairs glucose tolerance in the young adult. Large litter size in the guinea pig is characterised by reduced placental and fetal growth, reduced size at birth and insulin resistance in offspring in later life, providing a suitable model to test this hypothesis. Spontaneous restriction of fetal growth in the guinea pig, evident as small size at birth, was associated with increased salivary cortisol, in both sexes but at different stages of postnatal life. In males, salivary cortisol was increased with small size at birth in early and adult life, but reduced later with ageing. In females however, salivary cortisol was increased in juveniles and in aged adults, possibly reflecting the impact of the oestrus cycle on cortisol production in mature cycling females. Altered activity of the HPGA, which can influence that of the HPAA, has also been reported to be programmed by prenatal restriction. In the guinea pig, salivary testosterone in males increased with age and small size at birth in juveniles, young and aged adults. In females, salivary progesterone increased with age up to 300 days, and decreased with size at birth in the young guinea pig. Although testosterone inhibits HPAA activity, in males, mean salivary cortisol correlated positively with mean salivary testosterone at 100 and 300 days of age. In contrast, progesterone may enhance HPAA activity, and consistent with this, in females, mean salivary progesterone correlated with mean salivary cortisol at 400 days of age. Therefore, salivary testosterone in the male and salivary progesterone in the female guinea pig changes with maturation and has previously reported in this or other species, but small size at birth increases salivary testosterone in males with modest effects in early life in females. This together with the unexpected positive associations of salivary cortisol with testosterone in males, suggests that programming of the HPAA makes little contribution to that of the HPAA as indicated by salivary cortisol. Here we show that low birth weight is associated with increased fasting blood glucose and impaired glucose tolerance in both male and female young adult guinea pigs aged 100 days. Fasting and mean (during IVGTT) plasma cortisol was reduced in low birth weight female adult guinea pigs, and is not vary with size at birth at this age in males. This suggests that circulating cortisol does not contribute to the impaired glycaemia associated with small size at birth in the guinea pig. Glucose tolerance was increasingly impaired in males but not females, as mean plasma cortisol increased. This is consistent with cortisol impairing glycaemia in the guinea pig as in other species, in males at least. To assess the role of cortisol in prentally programmed impairment of glycaemia directly, metyrapone or vehicle containing 24% ethanol was administered to young adult guinea pigs for 3 days. Treatment with the latter impaired fasting blood glucose and glucose tolerance in females and the latter in males compared to a previous IVGTT and this was exacerbated in low birth weight females. Metyrapone prevented this impairment of fasting glycaemia and glucose tolerance in the low birth weight adult female guinea pig and in the male guinea pig regardless of birth weight class. Neither vehicle or metyrapone altered plasma cortisol, before or during a second IVGTT. Limited numbers of animals, particularly females, limited this study however and additional investigation is required. Nevertheless this shows for the first time that inhibition of glucocorticoid synthesis in the guinea pig improves glucose control. Furthermore this suggests that the low birth weight guinea pig may be more sensitive to cortisol, have increased cortisol synthesis or reduced inactivation of cortisol in peripheral tissues, leading to increased local cortisol action. In conclusion, alterations in peripheral HPAA activity in the guinea pig due to restricted fetal growth may contribute to their prenatally programmed development of impaired glucose tolerance as young adults, but the extent of that contribution may vary with age and gender. / Thesis (Ph.D.) -- University of Adelaide, School of Paediatrics and Reproductive Health, 2008
|
25 |
The Effect of Gonadal Hormones on Agonistic Behavior in Previously Defeated Female and Male Syrian HamstersSolomon, Matia B 26 May 2006 (has links)
Following social defeat, male hamsters exhibit behavioral changes characterized by a breakdown of normal territorial aggression and an increase in submissive/defensive behaviors in the presence of a non-aggressive intruder (NAI). We have termed this phenomenon conditioned defeat (CD). By contrast, only a small subset of defeated females exhibit submissive/defensive behavior in the presence of a NAI. We hypothesized that fluctuations in gonadal hormones might contribute to differences in the display of submissive behavior in intact female hamsters. Following social defeat, proestrous females (higher endogenous estradiol) were more likely to display conditioned defeat compared with diestrous 1 (lower endogenous estradiol) females. This finding suggests that there is an estrous cycle-dependent fluctuation in the display of CD in female hamsters and suggests that increased estradiol might contribute to increased submissive behavior. We then demonstrated that ovariectomized females given estradiol prior to CD testing exhibited significantly higher submissive behavior in the presence of a NAI suggesting that estradiol increases the expression of CD in female hamsters. We have also shown that castrated males that were singly housed for four weeks displayed significantly more submissive behavior than did their intact counterparts. Interestingly, castrated and intact males that were singly housed for 10 days prior to behavioral testing displayed similar behavior during CD testing. Together these data suggest that androgens and isolation modulate the display of CD in male hamsters. Finally, we examined brain activation following CD testing in defeated males and females (in diestrus 1 and proestrus). Defeated male and proestrous females exhibited increased Fos activation in the dorsal lateral septum and hypothalamic paraventricular nucleus relative to defeated diestrous 1 females. Diestrous 1 females exhibited increased Fos expression in the lateral bed nucleus of the stria terminalis compared with both defeated groups. Collectively, these data suggest that gonadal hormones and duration of individual housing modulate the display of CD in female and male hamsters and that those animals which display CD exhibit differences in patterns of neuronal activation than do those that do not display CD.
|
26 |
Hypothalamic-pituitary function following cranial irradiation for nasopharyngeal carcinoma林小玲, Lam, Siu-ling, Karen. January 1990 (has links)
published_or_final_version / Medicine / Master / Doctor of Medicine
|
27 |
Adrenocortical function in postnatally developing American kestrels (Falco sparverius)Love, Oliver Patrick. January 2001 (has links)
This project investigated postnatal development of the adrenocortical function in captive American kestrels (Falco sparverius) employing measurements of basal and stress-induced levels of corticosterone at specific developmental stages. Chicks aged 10-days exhibited partially functioning adrenocortical systems with baseline levels comparable to adults. The ability to respond to external stressors increased through postnatal development and by the age of 22 days, stress-induced maximal levels of corticosterone were indistinguishable from those of one-year old adults, and levels of 28-day old birds were significantly higher than these adults. In addition, baseline and maximum stress-induced levels of corticosterone at all ages were significantly higher in first-hatched chicks than all other siblings and these effects grew stronger through development. These results suggest that the brain-pituitary-adrenal axis in this semi-altricial species is (1) already partially developed in young chicks and (2) only becomes fully functional when behavioral and neuromuscular development is nearly complete. Furthermore, results from this study suggest that hatching asynchrony has an effect on this variation in stress-induced maximal levels of corticosterone during the latter half of postnatal development, with a higher degree of hatching asynchrony leading to larger disparity in adrenocortical function between first- and fourth-hatched chicks. This adrenocortical disparity resulting from female-mediated hatching asynchrony may potentially lead to both brood-reduction and brood survival under diametric food conditions, ensuring that the female's reproductive fitness is maximized in varying habitats. Variation of adrenocortical function among siblings may increase female efficiency in raising a brood of fit chicks, maximizing her reproductive success.
|
28 |
Role of G Protein-coupled Receptor Kinase 5 in Desensitisation of the V1b Vasopressin Receptor in Response to Arginine Vasopressinvan Bysterveldt, Katherine January 2011 (has links)
Arginine vasopressin (AVP) is a hypothalamic nonapeptide which regulates the hypothalamic-pituitary-adrenal axis response to stress by stimulating the secretion of adrenocorticotropin (ACTH) from corticotroph cells of the anterior pituitary. This effect is mediated by binding of AVP to the pituitary vasopressin receptor (V1bR). The V1bR belongs to the G protein-coupled receptor (GPCR) super family. Repeated stimulation of anterior pituitary cells with AVP has been shown to produce a loss of responsiveness to subsequent AVP stimulation. This phenomenon appears to be mediated by desensitisation of the V1bR, and may be due to phosphorylation of the receptor by G protein-coupled receptor kinase 5 (GRK5). The aim of this research was to establish and validate methods that would allow the role of GRK5 in the desensitisation of V1bR to AVP stimulation to be investigated. As no isoform specific inhibitors for GRK5 were available, HEK293 cells transiently transfected with the rat V1bR were used as a model system for this research. This allowed RNA interference (RNAi) to be used to knockdown GRK5 expression. The protocol for RNAi-mediated knockdown of GRK5 was established as part of this research. Protocols for Western blotting and qRT-PCR were also established to allow the RNAi-mediated knockdown of GRK5 protein and mRNA to be measured. Transfection of HEK293 cells with 10nM GRK5-targeting small interfering RNAs (siRNAs) reduced the expression of GRK5 protein to 53.4% ± 3.4% (mean ± SEM) of that seen in untreated control cells at 84 hours after transfection, while GRK5 mRNA levels were reduced to 28.7% ± 1.9% (mean ± SEM) of that of control cells 48 hours after transfection.
An experimental protocol was designed in this research that would coordinate the RNAi-mediated knockdown of GRK5 with transient transfection of the HEK293 cells with the rV1bR. Since, activated V1bRs couple to Gq/11 and stimulate the production of inositol phosphates (IPs), the responsiveness of the V1bR can be determined by measuring the accumulation of [H³]-IPs in cells labelled with [H³]-myo-inositol. In the protocol designed, the effect of GRK5 knockdown on V1bR desensitisation is determined by stimulating HEK293 cells expressing the rV1bR (and previously transfected with GRK5-targeting siRNA) with 0nM or 100nM AVP for 0, 5, 15, 30 or 60 minutes, and comparing the accumulation if IPs over time with that of cells that are not transfected with GRK5-targeting siRNA. This protocol can be used in future to investigate the role of GRK5 in V1bR desensitisation, and may be adapted to determine if other GRK isoforms are involved in V1bR desensitisation.
|
29 |
Maternal undernutrition and fetal blood pressure and the hypothalamo-pituitary adrenal axis in the late gestation fetal sheep / Lisa Jane Edwards.Edwards, Lisa Jane January 2001 (has links)
Includes bibliographical references (leaves 228-257). / xxii, 257 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Aims to determine the impact of maternal undernutrition during late gestation and during the periconceptional and gestational periods on fetal growth, fetal blood pressure and the fetal hypothalamo-pituitary adrenal axis in the sheep. / Thesis (Ph.D.)--University of Adelaide, Dept. of Physiology, 2001
|
30 |
Mechanisms and clinical implications of the neuroendocrine response to a novel carbon dioxide stressor in manKaye, Joey Michael January 2005 (has links)
Maintenance of normal health requires an intact stress system capable of mounting the metabolic, autonomic, behavioural and motor responses required for coping with or avoiding physiological and pathological challenges. The neuroendocrine component of this response principally involves the hypothalamic-pituitary-adrenal (HPA) and sympatho-adrenomedullary (SAM) axes. Impaired regulation of these axes has been implicated in the pathogenesis and expression of numerous disease states, however, it has proved very difficult to reproducibly activate the HPA and SAM axes and no single test exists that can reliably and safely be used to study these systems in man. Carbon dioxide (CO2) is the principal regulator of respiration, acid-base balance and behavioural-state arousal in humans. Paradigms of CO2 inhalation have been used in psychiatric research to investigate panic and anxiety disorders, but evaluation of other components of the stress response to CO2 has not previously been performed. I hypothesised that a single breath of 35% CO2 would be a simple and reliable tool for the evaluation of the stress response in humans. A single breath of four doses of CO2 (5%, 25%, 35% and 50%) was administered to 9 healthy volunteers in a randomised, single blind fashion. Subjective symptoms of anxiety increased in a dose-dependent manner. Inhalation of a single breath of 35% CO2 stimulated significant ACTH (p = 0.006), noradrenaline (p < 0.0001), cortisol (p = 0.02) and prolactin (p = 0.002) release. It also provoked an acute pressor response and an associated bradycardia (p < 0.0001 for both). No significant habituation of psychological, HPA or cardiovascular responses was seen when this dose was repeated after one week (n = 10) or 6 months (n = 5). It was apparent that a single breath of 35% CO2 reliably and safely produced SAM and HPA axis activation and further studies were then undertaken to assess the mechanism by which the observed responses occurred and its potential clinical implications. Administration of naltrexone (an opiate antagonist) to 10 normal volunteers disinhibited the HPA axis (p < 0.0004), whilst administration of metyrapone (a cortisol synthesis inhibitor) significantly reduced baseline cortisol (p < 0.03) levels. However, this alteration in HPA axis activity had no effect on either cardiovascular or psychological responses. Further, in a study of 8 breastfeeding mothers (a state associated with physiological suppression of the HPA axis) suckling significantly reduced plasma cortisol levels compared with control (p = 0.002) and bottle-feeders (p = 0.003). Despite this cortisol, systolic blood pressure (SBP), heart rate and psychological responses to 35% CO2 were not affected
|
Page generated in 0.1127 seconds