• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A data dependency recovery system for a heterogeneous multicore processor

Kainth, Haresh S. January 2014 (has links)
Multicore processors often increase the performance of applications. However, with their deeper pipelining, they have proven increasingly difficult to improve. In an attempt to deliver enhanced performance at lower power requirements, semiconductor microprocessor manufacturers have progressively utilised chip-multicore processors. Existing research has utilised a very common technique known as thread-level speculation. This technique attempts to compute results before the actual result is known. However, thread-level speculation impacts operation latency, circuit timing, confounds data cache behaviour and code generation in the compiler. We describe an software framework codenamed Lyuba that handles low-level data hazards and automatically recovers the application from data hazards without programmer and speculation intervention for an asymmetric chip-multicore processor. The problem of determining correct execution of multiple threads when data hazards occur on conventional symmetrical chip-multicore processors is a significant and on-going challenge. However, there has been very little focus on the use of asymmetrical (heterogeneous) processors with applications that have complex data dependencies. The purpose of this thesis is to: (i) define the development of a software framework for an asymmetric (heterogeneous) chip-multicore processor; (ii) present an optimal software control of hardware for distributed processing and recovery from violations;(iii) provides performance results of five applications using three datasets. Applications with a small dataset showed an improvement of 17% and a larger dataset showed an improvement of 16% giving overall 11% improvement in performance.
2

STL on Limited Local Memory (LLM) Multi-core Processors

January 2012 (has links)
abstract: Limited Local Memory (LLM) multicore architectures are promising powerefficient architectures will scalable memory hierarchy. In LLM multicores, each core can access only a small local memory. Accesses to a large shared global memory can only be made explicitly through Direct Memory Access (DMA) operations. Standard Template Library (STL) is a powerful programming tool and is widely used for software development. STLs provide dynamic data structures, algorithms, and iterators for vector, deque (double-ended queue), list, map (red-black tree), etc. Since the size of the local memory is limited in the cores of the LLM architecture, and data transfer is not automatically supported by hardware cache or OS, the usage of current STL implementation on LLM multicores is limited. Specifically, there is a hard limitation on the amount of data they can handle. In this article, we propose and implement a framework which manages the STL container classes on the local memory of LLM multicore architecture. Our proposal removes the data size limitation of the STL, and therefore improves the programmability on LLM multicore architectures with little change to the original program. Our implementation results in only about 12%-17% increase in static library code size and reasonable runtime overheads. / Dissertation/Thesis / M.S. Computer Science 2012
3

Exploiting parallelism of irregular problems and performance evaluation on heterogeneous multi-core architectures

Xu, Meilian 04 October 2012 (has links)
In this thesis, we design, develop and implement parallel algorithms for irregular problems on heterogeneous multi-core architectures. Irregular problems exhibit random and unpredictable memory access patterns, poor spatial locality and input dependent control flow. Heterogeneous multi-core processors vary in: clock frequency, power dissipation, programming model (MIMD vs. SIMD), memory design and computing units, scalar versus vector units. The heterogeneity of the processors makes designing efficient parallel algorithms for irregular problems on heterogeneous multicore processors challenging. Techniques of mapping tasks or data on traditional parallel computers can not be used as is on heterogeneous multi-core processors due to the varying hardware. In an attempt to understand the efficiency of futuristic heterogeneous multi-core architectures on applications we study several computation and bandwidth oriented irregular problems on one heterogeneous multi-core architecture, the IBM Cell Broadband Engine (Cell BE). The Cell BE consists of a general processor and eight specialized processors and addresses vector/data-level parallelism and instruction-level parallelism simultaneously. Through these studies on the Cell BE, we provide some discussions and insight on the performance of the applications on heterogeneous multi-core architectures. Verifying these experimental results require some performance modeling. Due to the diversity of heterogeneous multi-core architectures, theoretical performance models used for homogeneous multi-core architectures do not provide accurate results. Therefore, in this thesis we propose an analytical performance prediction model that considers the multitude architectural features of heterogeneous multi-cores (such as DMA transfers, number of instructions and operations, the processor frequency and DMA bandwidth). We show that the execution time from our prediction model is comparable to the execution time of the experimental results for a complex medical imaging application.
4

Exploiting parallelism of irregular problems and performance evaluation on heterogeneous multi-core architectures

Xu, Meilian 04 October 2012 (has links)
In this thesis, we design, develop and implement parallel algorithms for irregular problems on heterogeneous multi-core architectures. Irregular problems exhibit random and unpredictable memory access patterns, poor spatial locality and input dependent control flow. Heterogeneous multi-core processors vary in: clock frequency, power dissipation, programming model (MIMD vs. SIMD), memory design and computing units, scalar versus vector units. The heterogeneity of the processors makes designing efficient parallel algorithms for irregular problems on heterogeneous multicore processors challenging. Techniques of mapping tasks or data on traditional parallel computers can not be used as is on heterogeneous multi-core processors due to the varying hardware. In an attempt to understand the efficiency of futuristic heterogeneous multi-core architectures on applications we study several computation and bandwidth oriented irregular problems on one heterogeneous multi-core architecture, the IBM Cell Broadband Engine (Cell BE). The Cell BE consists of a general processor and eight specialized processors and addresses vector/data-level parallelism and instruction-level parallelism simultaneously. Through these studies on the Cell BE, we provide some discussions and insight on the performance of the applications on heterogeneous multi-core architectures. Verifying these experimental results require some performance modeling. Due to the diversity of heterogeneous multi-core architectures, theoretical performance models used for homogeneous multi-core architectures do not provide accurate results. Therefore, in this thesis we propose an analytical performance prediction model that considers the multitude architectural features of heterogeneous multi-cores (such as DMA transfers, number of instructions and operations, the processor frequency and DMA bandwidth). We show that the execution time from our prediction model is comparable to the execution time of the experimental results for a complex medical imaging application.

Page generated in 0.0384 seconds