• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 16
  • 16
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the role of antennas in the achievable resolution and accuracy from near-field microwave tomography

Bayat, Nozhan 07 1900 (has links)
This thesis studies the role of antennas in the achievable resolution and accuracy from nearfield microwave tomography (MWT). Near-field MWT is an emerging imaging modality in which the object being imaged is successively irradiated by several antennas, located close to the object, in the microwave frequency range. The scattered fields emanating from the object are then processed to form quantitative images from the dielectric properties of the object. This thesis starts with proposing a mathematical framework to study the achievable resolution from MWT. Within this framework, the effect of the near-field distribution of the utilized antennas on the achievable image resolution will be studied. Specifically, it will be shown that the use a focused near-field distribution to irradiate the object can enhance the achievable resolution. Within the same framework, the effects of the frequency of operation, multiple frequencies of operation, signal-to-noise ratio of the measured data, and the number of antenna elements on the achievable resolution and accuracy will be studied. After establishing the importance of the antenna’s incident field distribution, this thesis continues with investigating two different methods to achieve a focused near-field distribution. The first method, which attempts to synthesize focused beams from existing omnidirectional antenna elements, will be shown to be not successful using the method employed in this thesis. The second method is based on modifying an existing antenna element so as to make its near-field distribution more focused. Through different experiments and simulations, it will be shown that the second method can make the near-field distribution of the antenna more focused while maintaining multiple frequencies of operation for the antenna, and keeping its physical size reasonably small.
2

Investigation and Development of Algorithms and Techniques for Microwave Tomography

Mojabi, Puyan 09 April 2010 (has links)
This thesis reports on research undertaken in the area of microwave tomography (MWT) where the goal is to find the dielectric profile of an object of interest using microwave measurements collected outside the object. The main focus of this research is on the development of inversion algorithms which solve the electromagnetic inverse scattering problem associated with MWT. Various regularization techniques for the Gauss-Newton inversion algorithm are studied and classified. It is shown that these regularization techniques can be viewed from within a single consistent framework after applying some modifications. Within the framework of the two-dimensional MWT problem, the inversion of transverse magnetic and transverse electric data sets are considered and compared in terms of computational complexity, image quality and convergence rate. A new solution to the contrast source inversion formulation of the microwave tomography problem for the case where the MWT chamber consists of a circular conductive enclosure is introduced. This solution is based on expressing the unknowns of the problem as truncated eigenfunction expansions corresponding to the Helmholtz operator for a homogeneous background medium with appropriate boundary conditions imposed at the chamber walls. The MWT problem is also formulated for MWT chambers made of conducting cylinders of arbitrary shapes. It is shown that collecting microwave scattered-field data inside MWT setups with different boundary conditions can provide a robust set of useful information for the reconstruction of the dielectric profile. This leads to a novel MWT setup wherein a rotatable conductive triangular enclosure is used to generate scattered-field data. Antenna arrays, with as few as only four elements, that are fixed with respect to the object of interest can provide sufficient data to give good reconstructions, if the triangular enclosure is rotated a sufficient number of times. Preliminary results of using the algorithms presented herein on data collected using two different MWT prototypes currently under development at the University of Manitoba are reported. Using the open-region MWT prototype, a resolution study using the Gauss-Newton inversion method was performed using various cylindrical targets.
3

Investigation and Development of Algorithms and Techniques for Microwave Tomography

Mojabi, Puyan 09 April 2010 (has links)
This thesis reports on research undertaken in the area of microwave tomography (MWT) where the goal is to find the dielectric profile of an object of interest using microwave measurements collected outside the object. The main focus of this research is on the development of inversion algorithms which solve the electromagnetic inverse scattering problem associated with MWT. Various regularization techniques for the Gauss-Newton inversion algorithm are studied and classified. It is shown that these regularization techniques can be viewed from within a single consistent framework after applying some modifications. Within the framework of the two-dimensional MWT problem, the inversion of transverse magnetic and transverse electric data sets are considered and compared in terms of computational complexity, image quality and convergence rate. A new solution to the contrast source inversion formulation of the microwave tomography problem for the case where the MWT chamber consists of a circular conductive enclosure is introduced. This solution is based on expressing the unknowns of the problem as truncated eigenfunction expansions corresponding to the Helmholtz operator for a homogeneous background medium with appropriate boundary conditions imposed at the chamber walls. The MWT problem is also formulated for MWT chambers made of conducting cylinders of arbitrary shapes. It is shown that collecting microwave scattered-field data inside MWT setups with different boundary conditions can provide a robust set of useful information for the reconstruction of the dielectric profile. This leads to a novel MWT setup wherein a rotatable conductive triangular enclosure is used to generate scattered-field data. Antenna arrays, with as few as only four elements, that are fixed with respect to the object of interest can provide sufficient data to give good reconstructions, if the triangular enclosure is rotated a sufficient number of times. Preliminary results of using the algorithms presented herein on data collected using two different MWT prototypes currently under development at the University of Manitoba are reported. Using the open-region MWT prototype, a resolution study using the Gauss-Newton inversion method was performed using various cylindrical targets.
4

Microwave tomography

Nugroho, Agung Tjahjo January 2016 (has links)
This thesis reports on the research carried out in the area of Microwave Tomography (MWT) where the study aims to develop inversion algorithms to obtain cheap and stable solutions of MWT inverse scattering problems which are mathematically formulated as nonlinear ill posed problems. The study develops two algorithms namely Inexact Newton Backtracking Method (INBM) and Newton Iterative-Conjugate Gradient on Normal Equation (NI-CGNE) which are based on Newton method. These algorithms apply implicit solutions of the Newton equations with unspecific manner functioning as the regularized step size of the Newton iterative. The two developed methods were tested by the use of numerical examples and experimental data gained by the MWT system of the University of Manchester. The numerical experiments were done on samples with dielectric contrast objects containing different kinds of materials and lossy materials. Meanwhile, the quality of the methods is evaluated by comparingthem with the Levenberg Marquardt method (LM). Under the natural assumption that the INBM is a regularized method and the CGNE is a semi regularized method, the results of experiments show that INBM and NI-CGNE improve the speed, the spatial resolutions and the quality of direct regularization method by means of the LM method. The experiments also show that the developed algorithms are more flexible to theeffect of noise and lossy materials compared with the LM algorithm.
5

Theoretical and Numerical Analysis of a Novel Electrically Small and Directive Antenna

Elloian, Jeffrey 15 January 2014 (has links)
Small antennas have attracted significant attention due to their prolific use in consumer electronics. Such antennas are highly desirable in the healthcare industry for imaging and implants. However, most small antennas are not highly directive and are detuned when in the presence of a dielectric. The human body can be compared to a series of lossy dielectric media. A novel antenna design, the orthogonal coil, is proposed to counter both of these shortcomings. As loop antennas radiate primarily in the magnetic field, their far field pattern is less influenced by nearby lossy dielectrics. By exciting two orthogonal coil antennas in quadrature, their beams in the H-plane constructively add in one direction and cancel in the other. The result is a small, yet directive antenna, when placed near a dielectric interface. In addition to present a review of the current literature relating to small antennas and dipoles near lossy interfaces, the far field of the orthogonal coil antenna is derived. The directivity is then plotted for various conditions to observe the effect of changing dielectric constants, separation from the interface, etc. Numeric simulations were performed using both Finite Difference Time Domain (FDTD) in MATLAB and Finite Element Method (FEM) in Ansys HFSS using a anatomically accurate high-fidelity head mesh that was generated from the Visible Human Project® data. The following problem has been addressed: find the best radio-frequency path through the brain for a given receiver position - on the top of the sinus cavity. Two parameters: transmitter position and radiating frequency should be optimized simultaneously such that (i) the propagation path through the brain is the longest; and (ii) the received power is maximized. To solve this problem, we have performed a systematic and comprehensive study of the electromagnetic fields excited in the head by the aforementioned orthogonal dipoles. Similar analyses were performed using pulses to detect Alzheimer’s disease, and on the femur to detect osteoporosis.
6

The use of the source reconstruction method for antenna characterization

Narendra, Chaitanya 14 April 2016 (has links)
This thesis studies the use of the Source Reconstruction Method (SRM) to characterize antennas. The SRM calculates equivalent sources/currents on an arbitrarily shaped reconstruction surface to represent the original antenna. This is done by enforcing that the original antenna and equivalent currents radiate the same field at user selected measurement locations. These equivalent currents spatially characterize the original antenna because they can be used in direct radiation problems to obtain field estimates anywhere outside the reconstruction surface, including the far-field. First a spherical SRM algorithm is implemented and the diagnostic capabilities of the SRM are also synthetically shown through an example with an array of elementary dipoles. It is then shown that the SRM compares well to pre-existing commercial antenna software over different frequencies and can also be used successfully with a partial dataset. It is demonstrated that the equivalent currents can also provide meaningful information with experimental data. Next the hierarchical matrix framework is studied in conjunction with the SRM to decrease the algorithm's memory requirement and increase the speed of execution. It is shown that it is beneficial to use the hierarchical matrix framework with the SRM when using Love's condition or with measured data on a surface very close to the reconstruction surface. The SRM is then used to obtain incident field estimates in microwave imaging systems. Using a 2D transverse magnetic framework, we show that even with the limited data available in typical microwave tomography setups the SRM can produce incident field estimates in the imaging domain. These estimates are then used along with an MR-GNI algorithm to image synthetic and experimental objects with uncalibrated measured data. / October 2016
7

Design of Ultra Wideband Antenna Array for Microwave Tomography

Riaz, Laeeq January 2011 (has links)
Microwave tomography is a classical approach for non destructive evaluation. Microwave tomography has many biomedical applications such as brain imaging, temperature sensing in different biological tissues and breast cancer detection. In a microwave tomography system, numbers of radiators are used to transmit microwave signal into an object under test and the scattered fields are recorded. The collected data is used to quantitatively reconstruct the dielectric profiles of the object under test through inverse scattering mechanism. It has been shown that by using wide band data, highly stable and high resolution reconstructions can be obtained. Lower frequency components provide stability of the reconstructions, while higher frequency components contribute to the resolution.  Accordingly, ultra wideband antennas are required in UWB microwave tomography systems. In addition to ultra wide bandwidth, the antennas in a microwave tomography system should be easy to model with computational program. In this thesis Printed elliptical monopole antenna (PEMA) is investigated for microwave tomography. It is a multi resonant antenna with simple structure and yield ultra wide bandwidth. The performances of a single antenna and an antenna array are studied. The reflection coefficients of the antenna, mutual coupling between antennas and energy distribution in the near field are obtained by means of simulations in CST microwave studio.    The simulation result shows that reflection coefficients of the designed antenna are below         -10dB over the entire frequency band of interest (1-4.5GHz), mutual coupling between antennas at different locations are below -20dB over the entire frequency band of interest and the designed antenna also has good electric field distribution in an array configuration which makes the radiated power concentrating in the imaging region. These results indicate that PEMA is a potential antenna for microwave tomography applications.
8

Résolution de problèmes de rayonnement électromagnétique appliqués à l’imagerie médicale avec FreeFEM++ / Resolution of electromagnetic radiation problem applied to medical imaging with FreeFEM++

El Kanfoud, Ibtissam 10 January 2019 (has links)
L'utilisation des microondes pour le diagnostic est en plein essor dans le domaine médical. Une des toutes dernières applications concerne la détection d'AVC (Accident vasculaire Cérébral) par imagerie microonde. La Société EMTensor GmbH basée à Vienne en Autriche étudie actuellement un tel système en collaboration avec le LEAT, le LJAD de l’Université Côte d’Azur et le LJLL de Sorbonne Université, pour le diagnostic et le contrôle de l'efficacité de traitement. Le but de ce travail était de modéliser le système de mesure de l'imagerie du cerveau, développé par la société EMTensor GmbH. Il s'agit d'un système d'émission/réception composé de 160 antennes disposées en 5 couronnes de 32 antennes réparties sur une cuve métallique cylindrique de section circulaire semi-ouverte. Un des enjeux majeurs de ce travail consiste en la modélisation et la simulation électromagnétique (EM) du système complet incluant un modèle réaliste de cerveau. La difficulté réside à la fois dans la taille du problème EM à simuler en raison du rapport entre la taille considérable du système et la taille très faible de certaines inhomogénéités à l’intérieur du cerveau, et dans la grande hétérogénéité des permittivités diélectriques présentes à l’intérieur du cerveau. Nous avons décidé d’utiliser un code open source, FreeFem++ pour cette modélisation car il permet de déployer du calcul hautement parallèle et la décomposition de domaines, qui sont bien adaptés à la complexité du problème EM. Dans un premier temps, nous avons comparé les résultats de simulation du système de mesure à vide (sans le cerveau) aux mesures et aux résultats obtenus par le logiciel de simulation EM HFSS basé sur la FEM comme FreeFem++. Nous avons ensuite simulé un modèle de tête tridimensionnel virtuel, à partir de coupe d’image du cerveau (scanner et IRM), en partenariat avec EMTensor en recherchant la position et le type d'AVC (ischémique et hémorragique). L'influence du bruit de mesure, la valeur du gel d'adaptation utilisé, le couplage entre les capteurs et le couplage entre la tête et les capteurs sont également étudiés. Afin de valider ces modèles, deux cas simples ont été étudiés. Un grand tube et un petit tube en plastique sont remplis de liquide d'adaptation symbolisant les caractéristiques diélectriques d'un cerveau afin de retrouver la forme du tube utilisé. Nous avons montré qu’il est possible de développer des algorithmes de reconstruction pour montrer permettant de retrouver la forme des objets par imagerie qualitative. Enfin, avec les partenaires et l'entreprise d'EMTensor nous avons appliqué une méthode quantitative à la détection d’un AVC ischémique par la tomographie microonde. Le problème direct repose sur l’utilisation de FreeFem++, en utilisant des éléments d'ordre supérieur et des préconditionneurs parallèles pour la méthode de décomposition de domaine. Nous avons résolu le problème inverse par un algorithme de minimisation, afin de reconstruire des images tomographiques du cerveau dans des temps compatibles avec les impératifs médicaux définis par les cliniciens. / The use of microwaves for diagnosis is booming in the medical field. One of the latest applications is the detection of strokes by microwave imaging. The company EMTensor GmbH based in Vienna, Austria is currently studying such a system in collaboration with LEAT, the LJAD of the Côte d’Azur University and the LJLL of Sarbonne University, for the diagnosis and control of the treatement efficiency. The purpose of this work is to model the brain imaging measurement system developed by EMTensor GmbH. It is a transmission/ reception system consisting of 160 antennas arranged in 5 rings of 32 antennas distributed on a cylinder metal tank of semi-open circular section. One of the major issues of this work is the modeling and electromagnetic simulation (EM) of the complete system including a realistic brain model. The difficulty lies both in the size of the EM problem to be simulated beacause of the relationship between the considerable size of the system and the the very small size of certain inhomogeneities within the brain, and the great heterogeneity of the dielectric permittivities present inside the brain. We decided to use an open source software, FreeFem++ for this modelling because it is well adapted to high performance computing through domain decomposition methods, which is mandatory for the complexity of the EM problem. First, we compared the simulation results of the vacuum matching measurement system (without the brain) to the measurements and the results obtained by the FEM-based EM HFSS simulation software to those obtained by FreeFem++. We then simulated a virtual threedimensional head model, from brain imaging system cuts (CT scan and MRI), in partnership with EMTensor, looking for the position and type of stroke (ischemic and hemorragic). The influence of the measurement noise, the value of the adaptation gel used, the coupling between the sensors and the coupling between the head and the sensors are also studied. In order to validate these models, two simple cases have been studied. A large tube and a small plastic tube are fielld with adaptation liquid with the dielectric characteristic of a brain to find the shape of the tubes used by qualitative imaging. Finally, with the MEDIMAX project partners and the EMTensor company we applied a quantitative method to the detection of ischemic stroke by the microwave tomography. The direct problem has been solved with the help of FreeFem++, using hight order elements and parallel preconditioners for the domain decomposition method. We solved the inverse problem by a minimization algorithm, in order to reconstruct tomographic images of the brain in times compatible with medical imperatives defined by clinicians.”
9

Surface Modified Capillaries in Capillary Electrophoresis Coupled to Mass Spectrometry : Method Development and Exploration of the Potential of Capillary Electrophoresis as a Proteomic Tool

Zuberovic, Aida January 2009 (has links)
The increased knowledge about the complexity of the physiological processes increases the demand on the analytical techniques employed to explore them. A comprehensive analysis of the entire sample content is today the most common approach to investigate the molecular interplay behind a physiological deviation. For this purpose a method that offers a number of important properties, such as speed and simplicity, high resolution and sensitivity, minimal sample volume requirements, cost efficiency and robustness, possibility of automation, high-throughput and wide application range of analysis is requested. Capillary electrophoresis (CE) coupled to mass spectrometry (MS) has a great potential and fulfils many of these criteria. However, further developments and improvements of these techniques and their combination are required to meet the challenges of complex biological samples. Protein analysis using CE is a challenging task due to protein adsorption to the negatively charged fused-silica capillary wall. This is especially emphasised with increased basicity and size of proteins and peptides. In this thesis, the adsorption problem was addressed by using an in-house developed physically adsorbed polyamine coating, named PolyE-323. The coating procedure is fast and simple that generates a coating stable over a wide pH range, 2-11. By coupling PolyE-323 modified capillaries to MS, either using electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation (MALDI), successful analysis of peptides, proteins and complex samples, such as protein digests and crude human body fluids were obtained. The possibilities of using CE-MALDI-MS/MS as a proteomic tool, combined with a proper sample preparation, are further demonstrated by applying high-abundant protein depletion in combination with a peptide derivatisation step or isoelectric focusing (IEF). These approaches were applied in profiling of the proteomes of human cerebrospinal fluid (CSF) and human follicular fluid (hFF), respectively. Finally, a multiplexed quantitative proteomic analysis was performed on a set of ventricular cerebrospinal fluid (vCSF) samples from a patient with traumatic brain injury (TBI) to follow relative changes in protein patterns during the recovery process. The results presented in this thesis confirm the potential of CE, in combination with MS, as a valuable choice in the analysis of complex biological samples and clinical applications.
10

Near-field microwave tomography systems and the use of a scatterer probe technique

Ostadrahimi, Majid 06 January 2012 (has links)
This dissertation presents the contributions and the research conducted in developing and implementing Microwave Tomography (MWT) systems. MWT is an imaging modality which aims to interrogate an object of interest by microwave energy, and quantitatively “find” the interior spatial distribution of its dielectric properties using field measurements taken outside the object. Due to the inherent non-linearity of the MWT problem, a substantial amount of electromagnetic scattering data is required to ensure a robust inversion and quantitatively accurate imaging results. This research benefits a variety of applications including biomedical imaging, industrial non-destructive testing, and security applications. Developing a MWT system, requires many critical components including the bandwidth and polarization purity of the collected fields as well as calibration of the fields scattered by the object of interest. Two generations of MWT systems were designed, implemented, calibrated and tested at the University of Manitoba (UM). These systems aim different approaches for near-field measurements which are referred to as the direct and indirect methods. With regard to the antenna design, a novel methodology applicable to broadband planar antennas is introduced. This technique is based on a combination of field modelling, herein, the finite element method and transmission line modelling. In the first generation of the UM MWT systems, a suitable antenna system was utilized. The system under study was a prototype, where twenty-four co-resident antennas encircle the object of interest to directly measure the fields. In the second generation of the UM MWT systems, the feasibility of using a novel technique to indirectly measure the fields by a secondary array of near-field scatterer probes was studied. The technique is based on the Modulated Scatterer Technique (MST). In this system, antennas are called ``collectors", since the role of antennas are changed to collecting probes' scattered fields. A number of PIN diodes were utilized to activate the probes. Finally, the capability of the probe system was investigated and its performance with the previously constructed tomography systems was compared. Various dielectric phantoms were utilized to test the accuracy of the systems.

Page generated in 0.0886 seconds