91 |
PHASE EQUILIBRIA AND FORMATION KINETIS OF CARBON DIOXIDE, METHANE, AND NATURAL GAS IN SILICA GEL PORESKang, Seong-Pil, Seo, Yutaek 07 1900 (has links)
Hydrate phase equilibria for the CO2, CH4 and natural gas in silica gel pores of nominal pore
diameters 6, 30 and 100 nm were measured, and compared with the calculated results based on
van der Waals and Platteeuw model. At a specific temperature, three-phase hydrate–water-rich
liquid–vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher pressure
condition depending on pore sizes when compared with those of bulk hydrates. The activities of
water in porous silica gels were modified to account for capillary effect, and the calculated results
were in good agreement with the experimental data. To investigate the formation kinetics of each
system, the isobaric method was applied. It was found that there were no difference in structure
between hydrate in silica gel pore and that in bulk free state. Results showed that hydrate
formation in the silica gel pores indicated significantly faster rates, intensively reduced induction
times, increased gas consumption and conversion of water to hydrate as compared to hydrate
formation in bulk free water or fine ice powder. Utilizing these superior characteristics, formation
of hydrate in porous material is expected to present the process on gas separation or storage.
|
92 |
PRELIMINARY DISCUSSION ON GAS HYDRATE RESERVOIR SYSTEM OF SHENHU AREA, NORTH SLOPE OF SOUTH CHINA SEAWu, Nengyou, Yang, Shengxiong, Zhang, Haiqi, Liang, Jinqiang, Wang, Hongbin, Su, Xin, Fu, Shaoying 07 1900 (has links)
Gas hydrate is a very complicated reservoir system characterized of temperature, pressure, gas composition, pore-water geochemical features, and gas sources, gas hydrate distribution within the gas hydrate stability zone. Temperature, pressure and the gas composition of the sediments were suitable for gas hydrate formation in the gas hydrate reservoir system of Shenhu Area, north slope of South China Sea. The high-resolution seismic data and the gas hydrate drilling getting high concentrations of hydrate (>40%) in a disseminated form in foram-rich clay sediment showed that gas hydrate is distributed heterogeneously at all spatial scales in all drill holes, and the hydrate-bearing sediments ranged several ten meters in thickness are located in the lower part of gas hydrate stability zone (GHSZ), just above the bottom of gas hydrate stability zone (BGHSZ). It is likely seem that the methane to crystallize gas hydrate is from in-situ microbial methane.
|
93 |
OBSERVED GAS HYDRATE MORPHOLOGIES IN MARINE SEDIMENTSHolland, Melanie, Schultheiss, Peter, Roberts, John, Druce, Matthew 07 1900 (has links)
Small-scale morphology of gas hydrate is important for understanding the formation of gas
hydrate deposits, for estimating the concentrations of gas hydrate from geophysical data, and for
predicting their response to climate change or commercial production. The recent use of borehole
pressure coring tools has allowed marine gas-hydrate-bearing sediments to be recovered with
centimeter to sub-millimeter gas hydrate structures preserved in their in situ condition. Once
these sediment samples are recovered at in situ temperature and pressure, nondestructive
analyses, including gamma density, P-wave velocity, and X-ray imaging, are used to examine the
character of the gas hydrate relative to the structure of the surrounding sediment. Gas hydrate
morphology from pressure core data is summarized from the recent national gas hydrate
expeditions of India, China, and Korea, as well as from Ocean Drilling Program Leg 204,
Integrated Ocean Drilling Program Expedition 311, and the Gulf of Mexico Chevron-Texaco
Joint Industry Project. The most striking result is the variability of gas hydrate morphology in
clay, ranging from complex vein structures to an invisible pore-filling matrix. Both of these
morphologies have been observed in clay sediments at gas hydrate saturations equivalent to
30-40% of pore volume. A clear knowledge of detailed gas hydrate morphology will provide
important data to help determine the mechanisms of gas hydrate deposit formation and also
provide crucial data for modeling the kinetics of deposit dissociation, from both natural and
artificial causes. The morphology also has large effects on sedimentary physical properties, from
seismic velocities on a large scale to borehole electrical resistivities on a smaller scale, and gas
hydrate morphology will therefore impact estimation of gas hydrate saturation from geophysical
data. The detailed morphology of gas hydrate is an essential component for a full understanding
of the past, present, and future of any gas hydrate environment.
|
94 |
THERMAL PROPERTIES OF METHANE HYDRATE BY EXPERIMENT AND MODELING AND IMPACTS UPON TECHNOLOGYWarzinski, Robert P., Gamwo, Isaac K., Rosenbaum, Eilis J., Myshakin, Evgeniy M., Jiang, Hao, Jordan, Kenneth D., English, Niall J., Shaw, David W. 07 1900 (has links)
Thermal properties of pure methane hydrate, under conditions similar to naturally occurring
hydrate-bearing sediments being considered for potential production, have been determined both
by a new experimental technique and by advanced molecular dynamics simulation (MDS). A
novel single-sided, Transient Plane Source (TPS) technique has been developed and used to
measure thermal conductivity and thermal diffusivity values of low-porosity methane hydrate
formed in the laboratory. The experimental thermal conductivity data are closely matched by
results from an equilibrium MDS method using in-plane polarization of the water molecules.
MDS was also performed using a non-equilibrium model with a fully polarizable force field for
water. The calculated thermal conductivity values from this latter approach were similar to the
experimental data. The impact of thermal conductivity on gas production from a hydrate-bearing
reservoir was also evaluated using the Tough+/Hydrate reservoir simulator (Revised version of ICGH paper 5646).
|
95 |
CARBON DIOXIDE GAS HYDRATES ACCUMULATION IN FREEZING AND FROZEN SEDIMENTSChuvilin, Evgeny, Guryeva, Olga 07 1900 (has links)
The paper presents results of the experimental research on the process of CO2 gas hydrates formation in the porous media of sediments under positive and negative temperatures. The subject of research were sediment samples of various compositions including those selected in the permafrost area. The research was conducted in a special pressure chamber, which allowed to monitor pressure and temperature. Using the monitoring results it was possible to make quantitative estimation of the kinetics of CO2 hydrates accumulation in the model sediments. In the course of the research it was demonstrated, that active hydrates accumulation occurred in frozen sediments under negative temperatures (about -4 оС). At the same time a comparative analysis of СО2 and СН4 hydrates accumulation was made in the porous media of the sediment under negative temperatures. The performed experiments enabled to estimate an influence of temperature, sediment composition and water content on kinetics of CO2 hydrates accumulation in porous media. Besides, we made an estimation of the amount of hydrates, which could be formed in hydrates containing sediments at freezing of the remaining pore water.
|
96 |
EXPERIMENTAL METHOD FOR DETERMINATION OF THE RESIDUAL EQUILIBRIUM WATER CONTENT IN HYDRATE-SATURATED NATURAL SEDIMENTSChuvilin, Evgeny, Guryeva, Olga, Istomin, Vladimir, Safonov, Sergey 07 1900 (has links)
The equilibrium “pore water in sediment–gas hydrate-former–bulk gas hydrate” was experimentally studied. This residual pore water corresponds to a minimal possible amount of water in the sediment, which is in thermodynamic equilibrium with both gas and the bulk hydrate phase. This pore water can be defined as non-clathrated water by analogy to unfrozen water widely used in geocryological science. The amount of non-clathrated water depends on pressure, temperature, type of sediment, and gas hydrate former. The presence of residual pore water influences the thermodynamic properties of hydrate-saturated samples. The paper’s purpose is to describe a new experimental method for determining the amount of non-clathrated water in sediments at different pressure/temperature conditions. This method is based on measuring the equilibrium water content in an initially air-dried sediment plate that has been placed in close contact with an ice plate under isothermal, hydrate-forming gas pressure conditions. This method was used to measure the non-clathrated water content in kaolinite clay in equilibrium with methane hydrate and CO2 hydrate at a temperature of –7.5o C in a range of gas pressures from 0.1 to 8.7 MPa for methane and from 0.1 to 2.5 MPa for CO2. Experimental data show that at the fixed temperature the non-clathrated water in hydrate-containing sediments sharply reduces when gas pressure increases. The experiment demonstrates that the non-clathrated water content strongly depends on temperature, the mineral structure of sediment, and the hydrate-forming gas.
|
97 |
Infrared Spectroscopy for Monitoring Gas Hydrates in Aqueous SolutionDobbs, Gary T., Luzinova, Yuliya, Mizaikoff, Boris, Raichlin, Yosef, Katzir, Abraham 07 1900 (has links)
The presented work describes first principles for monitoring gas hydrate formation and dissociation in
solution by evaluating state-responsive IR absorption features of water with fiberoptic evanescent field
spectroscopy. In addition, a first order linear functional relationship has been derived according to Lambert
Beer’s law, which enables quantification of percentage gas hydrate within the volume of water directly
probed via the evanescent field. Moreover, spectroscopic studies evaluating seafloor sediments collected
from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix
components, thereby establishing evanescent field sensing strategies as a promising perspective for
monitoring the dynamics of gas hydrates in oceanic environments.
|
98 |
GAS SEPARATION AND STORAGE USING SEMI-CLATHRATE HYDRATESAhmadloo, Farid, Mali, Gwyn, Chapoy, Antonin, Tohidi, Bahman 07 1900 (has links)
Tetra-n-Butyl Ammonium Bromide (TBAB) forms semi-clathrate hydrates which can incorporate small gas molecules, such as methane and nitrogen at ambient temperatures and atmospheric pressure. Such favourable stability conditions, combined with ease of formation could make semi-clathrates particularly attractive for a large variety of applications. These hydrates have recently been investigated for their use in the separation of gases, and it is proposed that the same technology could potentially be used for storage and transportation of gases. To evaluate the feasibility of using TBAB hydrates for separation and storage purposes, an extensive test programme was conducted to determine: phase stability of the semi-clathrates, gas storage capacity, and composition of the stored gas. The results show that TBAB semi-clathrates have very favourable stability conditions. They can store considerable quantities of gas, and favour small molecules in their structures. These experiments suggest that semi-clathrate hydrates, such as TBAB, could have a significant potential as an alternative for industrial separation, storage, and transportation of natural gas.
|
99 |
PETROLEUM HYDRATE DEPOSITION MECHANISMS: THE INFLUENCE OF PIPELINE WETTABILITYAspenes, Guro, Høiland, Sylvi, Barth, Tanja, Askvik, Kjell Magne, Kini, Ramesh A., Larsen, Roar 07 1900 (has links)
The mechanisms by which hydrates deposit in a petroleum production-line are likely to be related
to pipeline surface properties, e.g. pipeline material, surface energy and roughness. In this work,
the wettability alteration of pipeline surfaces from contact with oil, as well as the adhesion energy
between water and solid in the presence of oil is investigated. Contact angles are determined as a
function of solid material and oil composition, for both model oils and crude oils. Although contact
angles in oil/brine/solid systems have been extensively reported in the literature, the variety of solids
that may mimic a pipeline is limited. In this study, we include various metal surfaces in addition to
glass and a coating. Initial results from using near infrared imaging for collecting contact angle data
in non-translucent systems are also presented.
|
100 |
CRITICAL DESCRIPTORS FOR HYDRATE PROPERTIES OF OILS: COMPOSITIONAL FEATURESBorgund, Anna E., Høiland, Sylvi, Barth, Tanja, Fotland, Per, Kini, Ramesh A., Larsen, Roar 07 1900 (has links)
In petroleum production systems, hydrate morphology is observed to be influenced by the crude
oil composition. This work is aimed at identifying which crude oil compositional parameters that
need to be determined in order to evaluate natural anti-agglomerating properties of crude oils, i.e. the
critical compositional descriptors. The compositional features of 22 crude oils have been studied,
and multivariate data analysis has been used to investigate the possibility for correlations between
several crude oil properties. The results show that biodegradation together with a relatively large
amount of acids are characteristic for non-plugging crude oils, while excess of basic compounds is
characteristic for plugging crude oils. The multivariate data analysis shows a division of the nonbiodegraded
oils, which are all plugging, and the biodegraded oils. In addition, the biodegraded
oils seem to be divided into two groups, one with plugging oils and one with mostly non-plugging
oils. The results show that the wettability can be predicted from the variables biodegradation level,
density, asphaltene content and TAN.
|
Page generated in 0.0216 seconds