• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • Tagged with
  • 118
  • 118
  • 118
  • 118
  • 118
  • 118
  • 42
  • 18
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

STRESS AND GAS HYDRATE-FILLED FRACTURE DISTRIBUTION, KRISHNA-GODAVARI BASIN, INDIA

Cook, Ann, Goldberg, David 07 1900 (has links)
In this research, we study high resistivity fractures found in unconsolidated clay sediments on logging-while-drilling borehole resistivity images from Indian continental margin collected during the National Gas Hydrate Program Expedition 01. These fractures, found at Sites 5, 6, 7, and 10 are likely filled with natural gas hydrate. Gas hydrate is identified on borehole logs and images as high resistivity responses without associated density increases or indications of free gas. The local state of stress at the time of fracturing can be determined by fracture orientations. In Holes 5A, 5B, 6A an 7A the gas hydrate-filled fractures have an aligned, preferred orientation likely associated with a local stress regime. At Site 10, where 130 m of gas hydrate-filled fractures were observed, fracturing is chaotic, likely due to high gas flux.
52

REGIONAL VERSUS DETAILED VELOCITY ANALYSIS TO QUANTIFY HYDRATE AND FREE GAS IN MARINE SEDIMENTS: THE SOUTH SHETLAND MARGIN CASE STUDY

Tinivella, Umberta, Loreto, Maria F., Accaino, Flavio 07 1900 (has links)
The presence of gas hydrate and free gas within marine sediments, deposited along the South Shetland margin, offshore the Antarctic Peninsula, was confirmed by low and high resolution geophysical data, acquired during three research cruises. Seismic data analysis has revealed the presence of a bottom simulating reflector that is very strong and continuous in the eastern part of the margin. This area can be considered as a useful site to study the seismic characteristics of sediments containing gas hydrate, with a particular focus on the estimation of gas hydrate and free gas amounts in the pore space. Pre-stack depth migration and tomographic inversion were performed to produce a regional velocity field of gas-phase bearing sediments and to obtain information about the average thickness of gas hydrate and free gas layers. Using these data and theoretical models, the gas hydrate and free gas concentrations can be estimated. Moreover, the common image gather semblance analysis revealed the presence of detailed features, such as layers with small thickness characterised by low velocity alternating with high velocity layers, below and above the bottom simulating reflector. These layers are associated with free gas trapped within the hydrate stability zone and deeper sediments. Thus, the use of the detailed and the regional velocity field analysis is important to give a more reliable estimate of gas content in the marine sediments.
53

EFFECT OF GRAIN CHARACTERISTICS ON THE BEHAVIOUR OF DISSEMINATED METHANE HYDRATE BEARING SEDIMENTS

Kingston, Emily, Clayton, Chris R.I., Priest, Jeffery, Best, Angus I. 07 1900 (has links)
Results of seismic surveys are routinely used to assess the presence of methane hydrate in deep ocean sediments. Accurate estimates of hydrate distribution and volume within the sediment are required to assess the potential of gas hydrate as an energy resource, driver for climate change or as a geotechnical hazard. However, seismic velocity may be affected not only by the quantity and morphology of the hydrate, but also by the properties of the host sediment, for example its particle size distribution and grain shape. This paper reports the results of experiments conducted to determine dynamic geophysical properties such as compressional wave velocity (Vp), shear wave velocity (Vs) and their respective attenuation measurements (Qp -1 and Qs -1) of specimens with varying amounts of disseminated methane hydrate within materials with different particle shapes and sizes. The results show that the impact of disseminated hydrate is affected both by mean particle size and by particle sphericity, with the surface area of the sediment grains influencing the spread of hydrate throughout a material and therefore it’s bonding capabilities. The sediments with 10% hydrate content show the highest surface areas correspond to the least increase in seismic velocity while sediments with low surface areas gives the most.
54

TESTING OF PRESSURISED CORES CONTAINING GAS HYDRATE FROM DEEP OCEAN SEDIMENTS

Clayton, Chris R.I., Kingston, Emily, Priest, Jeffery, Schultheiss, Peter, NGHP Expedition 01 Scientific Party 07 1900 (has links)
The recent development and deployment of HYACINTH and IODP PCS pressure cores on the JOIDES Resolution during Expedition 1 of the Indian National Gas Hydrate Program (NGHP-1) has provided some of the first “undisturbed” samples of gas hydrate in fine grained marine sediments. Some samples, once recovered from the seafloor, were subject to rapid depressurization and subsequent immersion in liquid nitrogen, at approximately -196oC, for use in subsequent laboratory test programs. This paper describes the techniques used at Southampton University, the difficulties encountered, and the results obtained from geotechnical testing of these samples. The original intention had been to pressurize and unfreeze the material before testing it in the Gas Hydrate Resonant Column (GHRC) Apparatus. Initial CT scanning of the samples showed that the sample quality might be too poor for such testing, and this proved to be the case. Instead a suite of geotechnical testing was carried out, the results of which are reported and interpreted in this paper.
55

THE STRUCTURE OF HYDRATE BEARING FINE GRAINED MARINE SEDIMENTS

Priest, Jeffery, Kingston, Emily, Clayton, Chris R.I., Schultheiss, Peter, Druce, Matthew, NGHP Expedition 01 Scientific Party 07 1900 (has links)
Recent advances in pressure coring techniques, such as the HYACINTH and IODP PCS pressure cores deployed during Expedition 1 of the India National Gas Hydrate Program using the JOIDES Resolution have enabled the recovery of fine grained sediments with intact gas hydrates contained within the sediments. This has provided the opportunity to study the morphology of gas hydrates within fine grained sediments which until now has been hindered due to the long transit times during core recovery leading to the dissociation of the gas hydrates. Once recovered from the seafloor, rapid depressurization and subsequent freezing of the cores in liquid nitrogen has enabled the near complete fine fracture filling nature of the gas hydrates to be largely preserved. High resolution X-ray CT (computer tomography), which has a pixel resolution of approx. 0.07mm, has been used to provide detailed images showing the 3-dimensional distribution of hydrates within the recovered fine grained sediments. Results have shown that in fine grained sediments gas hydrates grow along fine fracture faults within the sediment. Although the fractures were predominantly sub-vertical and continuous through the cores, stranded fractures were also observed suggesting that hydrate formation is episodic. However, within the cores open voids were observed which were not evident in low resolution CT images taken before the depressurization step suggesting that during depressurization either finely disseminated gas hydrate was dissociated or that gas exsolving from solution created these voids in the sample prior to freezing in liquid nitrogen. These detailed observations of gas hydrate in fine grained sediments will help us understand the differing morphology of gas hydrates in sediments. They also show that sample disturbance is still a major concern and further techniques are required to restrict these effects so that meaningful laboratory tests can be undertaken on recovered samples.
56

A HIGH YIELD PROCESS FOR HYDRATE FORMATION

Giavarini, Carlo, Maccioni, Filippo 07 1900 (has links)
A new procedure was studied to obtain concentrated methane hydrates in bulk, at medium-low pressure, avoiding the use of the spray process. Methane hydrate was formed at about 5 MPa and 2 °C in a reaction calorimeter with the volume of two liters. The clathrate concentration was about 30% and the final reactor pressure was 2.7 MPa. Any further repressurization at 2 °C had no noticeable effect on the hydrate formation. However, by repressurizing the vessel again to 4 MPa and increasing the temperature near the decomposition value (about 6° C) more clathrate was formed. Repressurizing again the reactor at 4 MPa and controlling the temperature at the same level, a concentration of 88% hydrate in the bulk was reached. Respect to the hydrate produced by the spray process, this procedure takes more time, but it can be sped up and made continuous by using teo reaction vessels, one for hydrate formation and the other for hydrate concentration. The advantage is the production of concentrated hydrates, by a simple equipment, working at relatively low pressures.
57

A NEW METHOD FOR THE DETECTION AND QUANTIFICATION OF DEEP-OCEAN METHANE HYDRATES USING SEISMICS

Wojtowitz, Gabrielle, Zervos, Antonis, Clayton, Chris R.I. 07 1900 (has links)
Methane gas hydrates have attracted significant international interest as a potential future energy resource, but also as a geotechnical hazard for offshore operations related to hydrocarbon recovery. In this context, the abilities to detect the presence of hydrate in marine sediments and to quantify the amount of hydrate contained therein, have become increasingly important over the years. Detection and quantification of hydrates are done on the basis of seismic surveys, which measure indirectly the bulk dynamic properties of large volumes of sediment in situ. Seismic data are then interpreted using an effective medium model, which employs theoretical assumptions to relate wave velocities to gas hydrate content of the sediment. Wave velocity can then be used to infer hydrate concentration levels. A host of such effective medium models exists in the literature. Many of these models have been calibrated on and tested on specific sites, and are not readily transferable to other settings. In addition, many models ignore the existence of heterogeneities of the host sediment, or the inhomogeneous distribution of hydrate within it. These, however, are factors that may have a significant impact on the seismic signature of the sediment-hydrate system, and thus on the predicted quantity of hydrate. This paper presents a review of existing effective medium models and identifies general areas for improvement. A new numerical modelling method is outlined that enhances existing effective medium approaches, by taking explicitly into account different hydrate morphologies within the host sediment.
58

METHANE HYDRATE RESOURCE ASSESSMENT OF THE OUTER CONTINENTAL SHELF: IN-PLACE GULF OF MEXICO RESULTS

Frye, Matthew, Grace, John, Hunt, Jesse, Kaufman, Gordon, Schuenemeyer, John, Shedd, William 07 1900 (has links)
The U.S. Minerals Management Service has completed a preliminary assessment of in-place gas hydrate resources in the Gulf of Mexico. A probabilistic model built on a mass balance approach to assessment provides a high degree of spatial resolution and supports detailed mapping. The model produces a Monte Carlo distribution of in-place resources that ranges from 314 trillion to 974 trillion cubic meters (TCM) with a mean value of 607 TCM. Additional work on development of a technically recoverable model component is under way.
59

SIMULATING THREE-DIMENSIONAL GAS HYDRATE GROWTH AND INHIBITION

Wathen, Brent, Jia, Zongchao, Walker, Virginia K. 07 1900 (has links)
The economic and safety hazards associated with the ability of gas hydrates to form in pipelines have prompted our interest in the inhibition of hydrate growth. Antifreeze proteins (AFPs) adsorb to ice surfaces and certain AFPs can also inhibit the growth of hydrates formed from water molecules organized in cage-like formations around a central small gas molecule. A Monte Carlo computational method for simulating the growth of ice crystals has been developed and it has proved useful in the understanding of the inhibition mechanism of these proteins. We have modified this crystal growth software in order to simulate the growth of large structure II gas hydrates, consisting of millions of water and gas molecules. This represents a first step towards investigating the effectiveness of novel compounds to inhibit hydrate growth in silico. Here, we describe these software modifications, and our efforts to incorporate type I AFP molecules into the hydrate growth simulations. Because both the docking interaction and inhibition mechanism for AFP towards hydrates remains unknown, we have set up a number of inhibitor screens to investigate possible AFP-hydrate docking models. Our goal is to reproduce the changes to gas hydrate morphology that have been observed in the presence of AFP, which will guide our choices for the binding alignment between AFPs and hydrates. This alignment will be instrumental for determining the AFPI-inhibition mechanism and should prove invaluable for the development of novel, hyperactive hydrate inhibitors.
60

FLUID FLOW THROUGH HETEROGENEOUS METHANE HYDRATE-BEARING SAND: OBSERVATIONS USING X-RAY CT SCANNING

Seol, Yongkoo, Kneafsey, Timothy J. 07 1900 (has links)
The effects of porous medium heterogeneity on methane hydrate formation, water flow through the heterogeneous hydrate-bearing sand, and hydrate dissociation were observed in an experiment using a heterogeneous sand column with prescribed heterogeneities. X-ray computed tomography (CT) was used to monitor saturation changes in water, gas, and hydrate during hydrate formation, water flow, and hydrate dissociation. The sand column was packed in several segments having vertical and horizontal layers with two distinct grain-size sands. The CT images showed that as hydrate formed, the water and hydrate saturations were dynamically redistributed by variations in capillary strength of the medium (the tendency for a material to imbibe water), which changed with the presence and saturation of hydrate. Water preferentially flowed through fine sand near higher hydrate-saturation regions where the capillary strength was elevated relative to the lower hydrate saturation regions. Hydrate dissociation initiated by depressurization varied with different grain sizes and hydrate saturations.

Page generated in 0.0238 seconds