• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New gate drive unit concepts for IGBTs and reverse conducting IGBTs

Lizama Arcos, Ignacio Esteban 27 November 2017 (has links) (PDF)
This work presents different novel gate drive unit (GDU) concepts for IGBT and reverse conducting IGBT (RC-IGBT). They have been experimentally tested with medium voltage class IGBT modules (1200...1700V/650…1400A) and a RC-IGBT module (1200V/200A). The switching behaviour of the RC-IGBT was investigated, and a new trigger pulse pattern to drive the RC-IGBT was developed, designed and implemented. The experimental results showed that the switching losses were reduced by 20% in the RC-IGBT compared to the switching losses of a standard diode. Two novel schemes are introduced to estimate the collector current through the IGBT, based on the measurement of the voltage across the internal stray inductance of the IGBT module. Furthermore, a GDU concept was derived to balance the on-state collector currents of parallel-connected IGBTs, reducing the current imbalance to 5%. Also, a new fast short circuit protection method (FSCP) for IGBT modules was developed, designed and implemented in another GDU, allowing turning-off the considered IGBT in less than 1μs, reducing the IGBT stress. Another scheme implemented in a GDU features an improved gate current switching profile of the IGBT, which reduces the switching losses by 25% compared to the standard switching method. In order to reduce the conduction losses, a GDU with an increased turn-on gate-emitter voltage (larger than 20 V) was investigated. In the investigated IGBT, the on-state losses were reduced by 18% when a gate-emitter voltage of 35V is used compared to when a gate-emitter voltage of 15V is used. All these new GDU concepts have been implemented with a simple and inexpensive electronic circuitry, which is an important feature for a possible industrial implementation.
2

New gate drive unit concepts for IGBTs and reverse conducting IGBTs

Lizama Arcos, Ignacio Esteban 23 October 2017 (has links)
This work presents different novel gate drive unit (GDU) concepts for IGBT and reverse conducting IGBT (RC-IGBT). They have been experimentally tested with medium voltage class IGBT modules (1200...1700V/650…1400A) and a RC-IGBT module (1200V/200A). The switching behaviour of the RC-IGBT was investigated, and a new trigger pulse pattern to drive the RC-IGBT was developed, designed and implemented. The experimental results showed that the switching losses were reduced by 20% in the RC-IGBT compared to the switching losses of a standard diode. Two novel schemes are introduced to estimate the collector current through the IGBT, based on the measurement of the voltage across the internal stray inductance of the IGBT module. Furthermore, a GDU concept was derived to balance the on-state collector currents of parallel-connected IGBTs, reducing the current imbalance to 5%. Also, a new fast short circuit protection method (FSCP) for IGBT modules was developed, designed and implemented in another GDU, allowing turning-off the considered IGBT in less than 1μs, reducing the IGBT stress. Another scheme implemented in a GDU features an improved gate current switching profile of the IGBT, which reduces the switching losses by 25% compared to the standard switching method. In order to reduce the conduction losses, a GDU with an increased turn-on gate-emitter voltage (larger than 20 V) was investigated. In the investigated IGBT, the on-state losses were reduced by 18% when a gate-emitter voltage of 35V is used compared to when a gate-emitter voltage of 15V is used. All these new GDU concepts have been implemented with a simple and inexpensive electronic circuitry, which is an important feature for a possible industrial implementation.

Page generated in 0.1123 seconds