• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modellierung von Transistoren mit lokaler Ladungsspeicherung für den Entwurf von Flash-Speichern / Modeling of Transistors with Local Charge Storage for the Design of Flash Memories

Srowik, Rico 02 April 2008 (has links) (PDF)
In dieser Arbeit werden Speichertransistoren mit Oxid-Nitrid-Oxid-Speicherschicht und lokaler Ladungsspeicherung untersucht, die zur nichtflüchtigen Speicherung von Informationen genutzt werden. Charakteristisch für diese Transistoren ist, dass an beiden Enden des Transistorkanals innerhalb der Isolationsschicht Informationen in Form von Ladungspaketen unabhängig und getrennt voneinander gespeichert werden. Für das Auslesen, Programmieren und Löschen der Speichertransistoren werden die physikalischen Hintergründe diskutiert und grundlegende Algorithmen zur Implementierung dieser Operationen auf einer typischen Speicherfeldarchitektur aufgezeigt. Für Standard-MOS-Transistoren wird ein Kurzkanal-Schwellspannungsmodell abgeleitet und analytisch gelöst. Anhand dieser Modellgleichung werden die bekannten Kurzkanaleffekte betrachtet. Weiterhin wird ein Modell zur Berechnung des Drainstroms von Kurzkanaltransistoren im Subthreshold-Arbeitsbereich abgeleitet und gezeigt, dass sich die Drain-Source-Leckströme bei Kurzkanaltransistoren vergrößern. Die Erweiterung des Schwellspannungsmodells für Standard-MOS-Transistoren auf den Fall der lokalen Ladungsspeicherung innerhalb der Isolationsschicht erlaubt die Ableitung eines Schwellspannungsmodells für Oxid-Nitrid-Oxid-Transistoren mit lokaler Ladungsspeicherung. Dieses Modell gestattet die qualitative und quantitative Diskussion der Erhöhung der Schwellspannung durch die lokale Injektion von Ladungsträgern beim Programmiervorgang. Weiterhin ist es mit diesem Modell möglich, die Trennung der an beiden Kanalenden des Transistors gespeicherten Informationen beim Auslesevorgang qualitativ zu erklären und diese Bittrennung in Abhängigkeit von der Drainspannung zu berechnen. Für Langkanalspeichertransistoren wird eine analytische Näherungslösung des Schwellspannungsmodells angegeben, während das Kurzkanalverhalten durch die numerische Lösung der Modellgleichung bestimmt werden kann. Für Langkanalspeichertransistoren wird ein Subthreshold-Modell zur Berechnung des Drainstroms abgeleitet. Dieses Modell zeigt, dass sich die Leckströme von programmierten Speichertransistoren im Vergleich zu Standard-MOS-Transistoren gleicher Schwellspannung vergrößern. Die Ursache dieses Effekts, die Verringerung der Subthreshold-Steigung von Transistoren im programmierten Zustand, wird analysiert. Für einige praktische Beispiele wird die Anwendung der hergeleiteten Modellgleichungen beim Entwurf von Flash-Speichern demonstriert. / In this work, memory transistors with an oxide-nitride-oxide trapping-layer and local charge storage, which are used for non-volatile information storage, are examined. Characteristic for these transistors is an independent and separated storage of information by charge packages, located at both sides of the transistor channel, in the insulation layer. The physical backgrounds for reading, programming and erasing the memory transistors are discussed, and basic algorithms are shown for implementing these operations on a typical memory array architecture. For standard MOS-transistors a short channel threshold model is derived and solved analytically. By using these model equations, the known short channel effects are considered. Further, a model for calculating the drain current of short channel transistors in the subthreshold operation region is derived. This model is used to show the increase of drain-source leakage currents in short channel transistors. By extending the standard MOS-transistor threshold voltage model for local charge storage in the insulation layers, the derivation of a threshold voltage model for oxide-nitride-oxide transistors with local charge storage is enabled. This model permits the quantitative and qualitative discussion of the increase in threshold voltage caused by local injection of charges during programming. Furthermore, with this model, the separation of the information, which are stored at both sides of the transistor channel, in the read-out operation is explained qualitatively, and the bit separation is calculated dependent on the drain voltage. For long channel memory transistors an analytical approximation of the threshold voltage model is given, whereas the short channel behaviour can be determined by solving the model equation numerically. For long channel memory transistors, a subthreshold model for calculating the drain current is derived. This model shows the increase in leakage current of programmed memory transistors in comparision to standard MOS-transistors. The root cause of this effect, the reduced subthreshold swing of transistors in the programmed state, is analysed. The application of the derived model equations for the development of flash memories is demonstrated with some practical examples.
2

Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie

Baldauf, Tim 29 January 2014 (has links) (PDF)
Die kontinuierliche Skalierung der planaren MOSFETs war in den vergangenen 40 Jahren der Schlüssel, um die Bauelemente immer kleiner und leistungsfähiger zu gestalten. Hinzu kamen Techniken zur mechanischen Verspannung, Verfahren zur Kurzzeitausheilung, die in-situ-dotierte Epitaxie und neue Materialien, wie das High-k-Gateoxid in Verbindung mit Titannitrid als Gatemetall. Jedoch erschwerten Kurzkanaleffekte und eine zunehmende Streuung der elektrischen Eigenschaften die Verkleinerung der planaren Transistoren erheblich. Somit gelangten die planaren MOSFETs mit der aktuellen 28 nm-Technologie teilweise an die Grenzen ihrer Funktionalität. Diese Arbeit beschäftigt sich daher mit der Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie, welche eine bessere Steuerfähigkeit des Gatekontaktes aufweisen und somit die Fortführung der Skalierung ermöglichen. Zudem standen die Anforderungen eines stabilen und kostengünstigen Herstellungsprozesses als Grundvoraussetzung zur Übernahme in die Volumenproduktion stets mit im Vordergrund. Die Simulationen der Tri-Gate-Transistoren stellten dabei den ersten Schritt hin zu einer Multi-Gate-Technologie dar. Ihre Prozessabfolge unterscheidet sich von den planaren Transistoren nur durch die Formierung der Finnen und bietet damit die Möglichkeit eines hybriden 22 nm-Prozesses. Am Beispiel der Tri-Gate-Transistoren wurden zudem die Auswirkungen der Kristallorientierung, der mechanischen Verspannung und der Überlagerungseffekte es elektrischen Feldes auf die Leistungsfähigkeit von Multi-Gate-Strukturen analysiert. Im nächsten Schritt wurden Transistoren mit vollständig verarmten Kanalgebieten untersucht. Sie weisen aufgrund einer niedrigen Kanaldotierung eine Volumeninversion, eine höhere Ladungsträgerbeweglichkeit und eine geringere Anfälligkeit gegenüber der zufälligen Dotierungsfluktuation auf, welche für leistungsfähige Multi-Gate-Transistoren entscheidende Kriterien sind. Zu den betrachteten Varianten zählen die planaren ultradünnen SOI-MOSFETs, die klassischen FinFETs mit schmalen hohen Finnen und die vertikalen Nanowire-Transistoren. Anschließend wurden die Vor- und Nachteile der verschiedenen Transistorstrukturen für eine mittel- bis langfristige industrielle Nutzung betrachtet. Dazu erfolgte eine Analyse der statistischen Schwankungen und eine Skalierung hin zur 14 nm-Technologie. Eine Zusammenfassung aller Ergebnisse und ein Ausblick auf die mögliche Übernahme der Konzepte in die Volumenproduktion schließen die Arbeit ab. / Within the past 40 years the continuous scaling of planar MOSFETs was key to shrink the devices and to improve their performance. Techniques like mechanical stressing, rapid thermal annealing and in-situ doped epitaxial growing as well as novel materials, such as high-k-gate-oxide in combination with titanium nitride as metal-gate, has been introduced. However, short-channel-effects and increased scattering of electrical proper-ties significantly complicate the scaling of planar transistors. Thus, the planar MOSFETs gradually reached their limits of functionality with the current 28 nm technology node. For that reason, this work focuses on integration of multi-gate transistors based on a 22 nm technology, which show an improved gate control and allow a continuous scaling. Furthermore, the requirements of a stable and cost-efficient process as decisive condition for mass fabrication were always taken into account. The simulations of the tri-gate transistors present the first step toward a multi-gate technology. The process sequence differs from the planar one solely by a fin formation and offers the possibility of a hybrid 22 nm process. Also, the impact of crystal orientation, mechanical stress and superposition of electrical fields on the efficiency of multi-gate structures were analyzed for the tri-gate transistors. In a second step transistors with fully depleted channel regions were studied. Due to low channel doping they are showing a volume inversion, a higher carrier mobility and a lower sensitivity to random doping fluctuations, which are essential criteria for powerful multi-gate transistors. Reviewed structure variants include planar ultra-thin-body-SOI-MOSFETs, classic FinFETs with a tall, narrow fins and vertical nanowire transistors. Then advantages and disadvantages of the considered transistor structures have been observed for a medium to long term industrial use. For this purpose, an analysis of statistical fluctuations and the scaling-down to 14 nm technology was carried out. A summary of all results and an outlook to the transfer of concepts into mass fabrication complete this work.
3

New gate drive unit concepts for IGBTs and reverse conducting IGBTs

Lizama Arcos, Ignacio Esteban 27 November 2017 (has links) (PDF)
This work presents different novel gate drive unit (GDU) concepts for IGBT and reverse conducting IGBT (RC-IGBT). They have been experimentally tested with medium voltage class IGBT modules (1200...1700V/650…1400A) and a RC-IGBT module (1200V/200A). The switching behaviour of the RC-IGBT was investigated, and a new trigger pulse pattern to drive the RC-IGBT was developed, designed and implemented. The experimental results showed that the switching losses were reduced by 20% in the RC-IGBT compared to the switching losses of a standard diode. Two novel schemes are introduced to estimate the collector current through the IGBT, based on the measurement of the voltage across the internal stray inductance of the IGBT module. Furthermore, a GDU concept was derived to balance the on-state collector currents of parallel-connected IGBTs, reducing the current imbalance to 5%. Also, a new fast short circuit protection method (FSCP) for IGBT modules was developed, designed and implemented in another GDU, allowing turning-off the considered IGBT in less than 1μs, reducing the IGBT stress. Another scheme implemented in a GDU features an improved gate current switching profile of the IGBT, which reduces the switching losses by 25% compared to the standard switching method. In order to reduce the conduction losses, a GDU with an increased turn-on gate-emitter voltage (larger than 20 V) was investigated. In the investigated IGBT, the on-state losses were reduced by 18% when a gate-emitter voltage of 35V is used compared to when a gate-emitter voltage of 15V is used. All these new GDU concepts have been implemented with a simple and inexpensive electronic circuitry, which is an important feature for a possible industrial implementation.
4

Entwicklung und Herstellung rekonfigurierbarer Nanodraht-Transistoren und Schaltungen / Development and fabrication of reconfigurable nanowire transistors and circuits

Heinzig, André 28 April 2016 (has links) (PDF)
Die enorme Steigerung der Leistungsfähigkeit integrierter Schaltkreise wird seit über 50 Jahren im Wesentlichen durch eine Verkleinerung der Bauelementdimensionen erzielt. Aufgrund des Erreichens physikalischer Grenzen kann dieser Trend, unabhängig von der Lösung technologischer Probleme, langfristig nicht fortgesetzt werden. Diese Arbeit beschäftigt sich mit der Entwicklung und Herstellung neuartiger Transistoren und Schaltungen, welche im Vergleich zu konventionellen Bauelementen funktionserweitert sind, wodurch ein zur Skalierung alternativer Ansatz vorgestellt wird. Ausgehend von gewachsenen und nominell undotierten Silizium-Nanodrähten wird die Herstellung von Schottky-Barrieren-Feldeffekttransistoren (SBFETs) mit Hilfe etablierter und selbst entwickelter Methoden beschrieben und die Ladungsträgerinjektion unter dem Einfluss elektrischer Felder an den dabei erzeugten abrupten Metall–Halbleiter-Grenzflächen analysiert. Zur Optimierung der Injektionsvorgänge dienen strukturelle Modifikationen, welche zu erhöhten ambipolaren Strömen und einer vernachlässigbaren Hysterese der SBFETs führen. Mit dem rekonfigurierbaren Feldeffekttransistor (RFET) konnte ein Bauelement erzeugt werden, bei dem sich Elektronen- und Löcherinjektion unabhängig und bis zu neun Größenordnungen modulieren lassen. Getrennte Topgate-Elektroden über den Schottkybarrieren ermöglichen dabei die reversible Konfiguration von unipolarer Elektronenleitung (n-Typ) zu Löcherleitung (p-Typ) durch eine Programmierspannung, wodurch die Funktionen konventioneller FETs in einem universellen Bauelement vereint werden. Messungen und 3D-FEM-Simulationen geben einen detaillierten Einblick in den elektrischen Transport und dienen der anschaulichen Beschreibung der Funktionsweise. Systematische Untersuchungen zu Änderungen im Transistoraufbau, den Abmessungen und der Materialzusammensetzung verdeutlichen, dass zusätzliche Strukturverkleinerungen sowie die Verwendung von Halbleitern mit niedrigem Bandabstand die elektrische Charakteristik dieser Transistoren weiter verbessern. Im Hinblick auf die Realisierung neuartiger Schaltungen wird ein Konzept beschrieben, die funktionserweiterten Transistoren in einer energieeffizienten Komplementärtechnologie (CMOS) nutzbar zu machen. Die dafür notwendigen gleichen Elektronen- und Löcherstromdichten konnten durch einen modifizierten Ladungsträgertunnelprozess infolge mechanischer Verspannungen an den Schottkyübergängen erzielt und weltweit erstmalig an einem Transistor gezeigt werden. Der aus einem <110>-Nanodraht mit 12 nm Si-Kerndurchmesser erzeugte elektrisch symmetrische RFET weist dabei eine bisher einzigartige Kennliniensymmetrie auf.Die technische Umsetzung des Schaltungskonzepts erfolgt durch die Integration zweier RFETs innerhalb eines Nanodrahts zum dotierstofffreien CMOS-Inverter, der flexibel programmiert werden kann. Die rekonfigurierbare NAND/NOR- Schaltung verdeutlicht, dass durch die RFET-Technologie die Bauelementanzahl reduziert und die Funktionalität des Systems im Vergleich zu herkömmlichen Schaltungen erhöht werden kann. Ferner werden weitere Schaltungsbeispiele sowie die technologischen Herausforderungen einer industriellen Umsetzung des Konzeptes diskutiert. Mit der funktionserweiterten, dotierstofffreien RFET-Technologie wird ein neuartiger Ansatz beschrieben, den technischen Fortschritt der Elektronik nach dem erwarteten Ende der klassischen Skalierung zu ermöglichen. / The enormous increase in performance of integrated circuits has been driven for more than 50 years, mainly by reducing the device dimensions. This trend cannot continue in the long term due to physical limits being reached. The scope of this thesis is the development and fabrication of novel kinds of transistors and circuits that provide higher functionality compared to the classical devices, thus introducing an alternative approach to scaling. The fabrication of Schottky barrier field effect transistors (SBFETs) based on nominally undoped grown silicon nanowires using established and developed techniques is described. Further the charge carrier injection in the fabricated metal to semiconductor interfaces is analyzed under the influence of electrical fields. Structural modifications are used to optimize the charge injection resulting in increased ambipolar currents and negligible hysteresis of the SBFETs. Moreover, a device has been developed called the reconfigurable field-effect transistor (RFET), in which the electron and hole injection can be independently controlled by up to nine orders of magnitude. This device can be reversibly configured from unipolar electron conducting (ntype) to hole conducting (p-type) by the application of a program voltage to the two individual top gate electrodes at the Schottky junctions. So the RFET merges the functionality of classical FETs into one universal device. Measurements and 3D finite element method simulations are used to analyze the electrical transport and to describe the operation principle. Systematic investigations of changes in the device structure, dimensions and material composition show enhanced characteristics in scaled and low bandgap semiconductor RFET devices. For the realization of novel circuits, a concept is described to use the enhanced functionality of the transistors in order to realize energy efficient complementary circuits (CMOS). The required equal electron and hole current densities are achieved by the modification of charge carrier tunneling due to mechanical stress and are shown for the first time ever on a transistor. An electrically symmetric RFET based on a compressive strained nanowire in <110> crystal direction and 12 nm silicon core diameter exhibits unique electrical symmetry. The circuit concept is demonstrated by the integration of two RFETs on a single nanowire, thus realizing a dopant free CMOS inverter which can be programmed flexibly. The reconfigurable NAND/NOR shows that the RFET technology can lead to a reduction of the transistor count and can increase the system functionality. Additionally, further circuit examples and the challenges of an industrial implementation of the concept are discussed.The enhanced functionality and dopant free RFET technology describes a novel approach to maintain the technological progress in electronics after the expected end of classical device scaling.

Page generated in 0.0326 seconds