1 |
Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-TechnologieBaldauf, Tim 29 January 2014 (has links) (PDF)
Die kontinuierliche Skalierung der planaren MOSFETs war in den vergangenen 40 Jahren der Schlüssel, um die Bauelemente immer kleiner und leistungsfähiger zu gestalten. Hinzu kamen Techniken zur mechanischen Verspannung, Verfahren zur Kurzzeitausheilung, die in-situ-dotierte Epitaxie und neue Materialien, wie das High-k-Gateoxid in Verbindung mit Titannitrid als Gatemetall. Jedoch erschwerten Kurzkanaleffekte und eine zunehmende Streuung der elektrischen Eigenschaften die Verkleinerung der planaren Transistoren erheblich. Somit gelangten die planaren MOSFETs mit der aktuellen 28 nm-Technologie teilweise an die Grenzen ihrer Funktionalität. Diese Arbeit beschäftigt sich daher mit der Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie, welche eine bessere Steuerfähigkeit des Gatekontaktes aufweisen und somit die Fortführung der Skalierung ermöglichen. Zudem standen die Anforderungen eines stabilen und kostengünstigen Herstellungsprozesses als Grundvoraussetzung zur Übernahme in die Volumenproduktion stets mit im Vordergrund. Die Simulationen der Tri-Gate-Transistoren stellten dabei den ersten Schritt hin zu einer Multi-Gate-Technologie dar. Ihre Prozessabfolge unterscheidet sich von den planaren Transistoren nur durch die Formierung der Finnen und bietet damit die Möglichkeit eines hybriden 22 nm-Prozesses. Am Beispiel der Tri-Gate-Transistoren wurden zudem die Auswirkungen der Kristallorientierung, der mechanischen Verspannung und der Überlagerungseffekte es elektrischen Feldes auf die Leistungsfähigkeit von Multi-Gate-Strukturen analysiert. Im nächsten Schritt wurden Transistoren mit vollständig verarmten Kanalgebieten untersucht. Sie weisen aufgrund einer niedrigen Kanaldotierung eine Volumeninversion, eine höhere Ladungsträgerbeweglichkeit und eine geringere Anfälligkeit gegenüber der zufälligen Dotierungsfluktuation auf, welche für leistungsfähige Multi-Gate-Transistoren entscheidende Kriterien sind. Zu den betrachteten Varianten zählen die planaren ultradünnen SOI-MOSFETs, die klassischen FinFETs mit schmalen hohen Finnen und die vertikalen Nanowire-Transistoren. Anschließend wurden die Vor- und Nachteile der verschiedenen Transistorstrukturen für eine mittel- bis langfristige industrielle Nutzung betrachtet. Dazu erfolgte eine Analyse der statistischen Schwankungen und eine Skalierung hin zur 14 nm-Technologie. Eine Zusammenfassung aller Ergebnisse und ein Ausblick auf die mögliche Übernahme der Konzepte in die Volumenproduktion schließen die Arbeit ab. / Within the past 40 years the continuous scaling of planar MOSFETs was key to shrink the devices and to improve their performance. Techniques like mechanical stressing, rapid thermal annealing and in-situ doped epitaxial growing as well as novel materials, such as high-k-gate-oxide in combination with titanium nitride as metal-gate, has been introduced. However, short-channel-effects and increased scattering of electrical proper-ties significantly complicate the scaling of planar transistors. Thus, the planar MOSFETs gradually reached their limits of functionality with the current 28 nm technology node. For that reason, this work focuses on integration of multi-gate transistors based on a 22 nm technology, which show an improved gate control and allow a continuous scaling. Furthermore, the requirements of a stable and cost-efficient process as decisive condition for mass fabrication were always taken into account. The simulations of the tri-gate transistors present the first step toward a multi-gate technology. The process sequence differs from the planar one solely by a fin formation and offers the possibility of a hybrid 22 nm process. Also, the impact of crystal orientation, mechanical stress and superposition of electrical fields on the efficiency of multi-gate structures were analyzed for the tri-gate transistors. In a second step transistors with fully depleted channel regions were studied. Due to low channel doping they are showing a volume inversion, a higher carrier mobility and a lower sensitivity to random doping fluctuations, which are essential criteria for powerful multi-gate transistors. Reviewed structure variants include planar ultra-thin-body-SOI-MOSFETs, classic FinFETs with a tall, narrow fins and vertical nanowire transistors. Then advantages and disadvantages of the considered transistor structures have been observed for a medium to long term industrial use. For this purpose, an analysis of statistical fluctuations and the scaling-down to 14 nm technology was carried out. A summary of all results and an outlook to the transfer of concepts into mass fabrication complete this work.
|
2 |
Modeling Random Dopant Fluctuation Effects in Nanoscale Tri-gate FETsOgden, Joshua Lee 01 December 2011 (has links)
The tri-gate FET has been hailed as the biggest breakthrough in transistor technology in the last 20 years. The increase in device performance (faster switching, less delay, improved short channel effects, etc.) coupled with the reduction in device size, would allow for huge gains in the electronics industry. This thesis aims to not only investigate the validity of these claims, but also how random dopant fluctuation (RDF) affects the tri-gates performance and how to curb these issues. In order to achieve this, an atomistic 3-D device simulation program was utilized in order to capture the many quantum mechanical effects that devices of this size experience and compare the results against a similar planar device. We see the tri-gate FET does indeed perform extremely well compared to its planar counterpart, but both devices experience a great deal of fluctuations due to the random dopants in the device. In order to limit the RDF effects a variety of methods were implemented including increasing doping concentrations in the channel, source, and drain regions, varying the source/drain junction depths, and varying the source/drain contact workfunction. The results showed that increasing doping concentrations in order to reduce the amount of space the dopants had to diffuse did not reduce the randomness experienced by the devices, but rather the randomness increased. The dopant fluctuation was insensitive to the varying of the workfunction, but was found to decrease with an increase in junction depth in the source/drain regions. With randomness in the tri-gate reduced, the overall performance should increase when used in ICs, where consistency in device characteristics is essential.
|
3 |
Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-TechnologieBaldauf, Tim 10 January 2014 (has links)
Die kontinuierliche Skalierung der planaren MOSFETs war in den vergangenen 40 Jahren der Schlüssel, um die Bauelemente immer kleiner und leistungsfähiger zu gestalten. Hinzu kamen Techniken zur mechanischen Verspannung, Verfahren zur Kurzzeitausheilung, die in-situ-dotierte Epitaxie und neue Materialien, wie das High-k-Gateoxid in Verbindung mit Titannitrid als Gatemetall. Jedoch erschwerten Kurzkanaleffekte und eine zunehmende Streuung der elektrischen Eigenschaften die Verkleinerung der planaren Transistoren erheblich. Somit gelangten die planaren MOSFETs mit der aktuellen 28 nm-Technologie teilweise an die Grenzen ihrer Funktionalität. Diese Arbeit beschäftigt sich daher mit der Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie, welche eine bessere Steuerfähigkeit des Gatekontaktes aufweisen und somit die Fortführung der Skalierung ermöglichen. Zudem standen die Anforderungen eines stabilen und kostengünstigen Herstellungsprozesses als Grundvoraussetzung zur Übernahme in die Volumenproduktion stets mit im Vordergrund. Die Simulationen der Tri-Gate-Transistoren stellten dabei den ersten Schritt hin zu einer Multi-Gate-Technologie dar. Ihre Prozessabfolge unterscheidet sich von den planaren Transistoren nur durch die Formierung der Finnen und bietet damit die Möglichkeit eines hybriden 22 nm-Prozesses. Am Beispiel der Tri-Gate-Transistoren wurden zudem die Auswirkungen der Kristallorientierung, der mechanischen Verspannung und der Überlagerungseffekte es elektrischen Feldes auf die Leistungsfähigkeit von Multi-Gate-Strukturen analysiert. Im nächsten Schritt wurden Transistoren mit vollständig verarmten Kanalgebieten untersucht. Sie weisen aufgrund einer niedrigen Kanaldotierung eine Volumeninversion, eine höhere Ladungsträgerbeweglichkeit und eine geringere Anfälligkeit gegenüber der zufälligen Dotierungsfluktuation auf, welche für leistungsfähige Multi-Gate-Transistoren entscheidende Kriterien sind. Zu den betrachteten Varianten zählen die planaren ultradünnen SOI-MOSFETs, die klassischen FinFETs mit schmalen hohen Finnen und die vertikalen Nanowire-Transistoren. Anschließend wurden die Vor- und Nachteile der verschiedenen Transistorstrukturen für eine mittel- bis langfristige industrielle Nutzung betrachtet. Dazu erfolgte eine Analyse der statistischen Schwankungen und eine Skalierung hin zur 14 nm-Technologie. Eine Zusammenfassung aller Ergebnisse und ein Ausblick auf die mögliche Übernahme der Konzepte in die Volumenproduktion schließen die Arbeit ab.:Symbol- und Abkürzungsverzeichnis
1 Einleitung
2 Grundlagen und Entwicklung der CMOS-Technologie
2.1 Planare Transistoren
2.1.1 Theoretische Grundlagen von MOSFETs
2.1.2 Skalierung und Kurzkanalverhalten planarer Transistoren
2.1.3 Mechanische Verspannung von Silizium
2.1.4 Techniken zur mechanischen Verspannung
2.2 Multi-Gate-Transistoren
2.2.1 Multi-Gate-Strukturen
2.2.2 Überlagerungseffekte
2.2.3 Quanteneffekte
2.3 Stand der Technik
3 Grundlagen der Simulation
3.1 Prozesssimulation
3.1.1 Abscheiden und Abtragen von Schichten
3.1.2 Implantation
3.1.3 Thermische Ausheilung mit Diffusion
3.2 Bauelementesimulation
3.2.1 Grundgleichungen und Ladungsträgertransport
3.2.2 Bandlückenverengung
3.2.3 Generation und Rekombination
3.2.4 Ladungsträgerbeweglichkeit
3.2.5 Effekte der mechanischen Verspannung
3.2.6 Ladungsträgerquantisierung
3.3 Kalibrierung der Modellparameter
3.3.1 Prozessparameter
3.3.2 Modellparameter
4 Planare Transistoren auf Basis einer 22 nm-Technologie
4.1 Transistoraufbau
4.1.1 Replacement-Gate-Prozess
4.1.2 In-situ-dotierte Source-Drain-Gebiete
4.1.3 Haloimplantation
4.1.4 Elemente der mechanischen Verspannung
4.2 Charakterisierung des elektrischen Verhaltens
4.2.1 Stationäres Verhalten
4.2.2 Gatesteuerung und Kurzkanaleffekte
4.2.3 Dynamisches Verhalten
5 Tri-Gate-Transistoren
5.1 Prozessintegration und Transistoraufbau
5.1.1 Anforderungen an hochintegrierte Schaltkreise
5.1.2 Hybride CMOS-Technologie
5.1.3 Strukturierung der Finne
5.1.4 Geometrieabhängiges Dotierungsprofil
5.2 Charakterisierung des elektrischen Verhaltens
5.2.1 Stationäres Verhalten
5.2.2 Kurzkanaleffekte und Gatesteuerung
5.2.3 Eckeneffekt
5.2.4 Eckenimplantation
5.2.5 Finnengeometrie
5.2.6 Dynamisches Verhalten
5.3 Optimierung der Tri-Gate-Struktur
5.3.1 Gestaltung der epitaktischen Source-Drain-Gebiete
5.3.2 Mechanisch verspanntes Isolationsoxid
5.3.3 Substratorientierung
6 Transistoren mit vollständig verarmtem Kanal
6.1 Ultra-Dünne-SOI-MOSFETs
6.1.1 Prozessintegration
6.1.2 Charakterisierung des elektrischen Verhaltens
6.2 FinFETs
6.2.1 Prozessintegration
6.2.2 Charakterisierung des elektrischen Verhaltens
6.3 Vertikale Nanowire-MOSFETs
6.3.1 Prozessintegration
6.3.2 Strukturierung des Aktivgebiets
6.3.3 Charakterisierung des elektrischen Verhaltens
6.3.4 Asymmetrisches Dotierungsprofil
6.3.5 Mechanische Verspannung
7 Skalierung und statistische Schwankungen der Strukturen
7.1 Skalierung zur 14 nm-Technologie
7.1.1 Leistungsfähigkeit
7.1.2 Kurzkanalverhalten und Steuerfähigkeit
7.2 Statistische Schwankungen
7.2.1 Impedanz-Feld-Methode
7.2.2 Zufällige Dotierungsfluktuation
7.2.3 Fixe Ladungen im Oxid
7.2.4 Metall-Gate-Granularität
7.2.5 Geometrische Variationen
7.2.6 Kombination der Störquellen
8 Zusammenfassung und Ausblick
Anhang
Literaturverzeichnis
Danksagung
Acknowledgement / Within the past 40 years the continuous scaling of planar MOSFETs was key to shrink the devices and to improve their performance. Techniques like mechanical stressing, rapid thermal annealing and in-situ doped epitaxial growing as well as novel materials, such as high-k-gate-oxide in combination with titanium nitride as metal-gate, has been introduced. However, short-channel-effects and increased scattering of electrical proper-ties significantly complicate the scaling of planar transistors. Thus, the planar MOSFETs gradually reached their limits of functionality with the current 28 nm technology node. For that reason, this work focuses on integration of multi-gate transistors based on a 22 nm technology, which show an improved gate control and allow a continuous scaling. Furthermore, the requirements of a stable and cost-efficient process as decisive condition for mass fabrication were always taken into account. The simulations of the tri-gate transistors present the first step toward a multi-gate technology. The process sequence differs from the planar one solely by a fin formation and offers the possibility of a hybrid 22 nm process. Also, the impact of crystal orientation, mechanical stress and superposition of electrical fields on the efficiency of multi-gate structures were analyzed for the tri-gate transistors. In a second step transistors with fully depleted channel regions were studied. Due to low channel doping they are showing a volume inversion, a higher carrier mobility and a lower sensitivity to random doping fluctuations, which are essential criteria for powerful multi-gate transistors. Reviewed structure variants include planar ultra-thin-body-SOI-MOSFETs, classic FinFETs with a tall, narrow fins and vertical nanowire transistors. Then advantages and disadvantages of the considered transistor structures have been observed for a medium to long term industrial use. For this purpose, an analysis of statistical fluctuations and the scaling-down to 14 nm technology was carried out. A summary of all results and an outlook to the transfer of concepts into mass fabrication complete this work.:Symbol- und Abkürzungsverzeichnis
1 Einleitung
2 Grundlagen und Entwicklung der CMOS-Technologie
2.1 Planare Transistoren
2.1.1 Theoretische Grundlagen von MOSFETs
2.1.2 Skalierung und Kurzkanalverhalten planarer Transistoren
2.1.3 Mechanische Verspannung von Silizium
2.1.4 Techniken zur mechanischen Verspannung
2.2 Multi-Gate-Transistoren
2.2.1 Multi-Gate-Strukturen
2.2.2 Überlagerungseffekte
2.2.3 Quanteneffekte
2.3 Stand der Technik
3 Grundlagen der Simulation
3.1 Prozesssimulation
3.1.1 Abscheiden und Abtragen von Schichten
3.1.2 Implantation
3.1.3 Thermische Ausheilung mit Diffusion
3.2 Bauelementesimulation
3.2.1 Grundgleichungen und Ladungsträgertransport
3.2.2 Bandlückenverengung
3.2.3 Generation und Rekombination
3.2.4 Ladungsträgerbeweglichkeit
3.2.5 Effekte der mechanischen Verspannung
3.2.6 Ladungsträgerquantisierung
3.3 Kalibrierung der Modellparameter
3.3.1 Prozessparameter
3.3.2 Modellparameter
4 Planare Transistoren auf Basis einer 22 nm-Technologie
4.1 Transistoraufbau
4.1.1 Replacement-Gate-Prozess
4.1.2 In-situ-dotierte Source-Drain-Gebiete
4.1.3 Haloimplantation
4.1.4 Elemente der mechanischen Verspannung
4.2 Charakterisierung des elektrischen Verhaltens
4.2.1 Stationäres Verhalten
4.2.2 Gatesteuerung und Kurzkanaleffekte
4.2.3 Dynamisches Verhalten
5 Tri-Gate-Transistoren
5.1 Prozessintegration und Transistoraufbau
5.1.1 Anforderungen an hochintegrierte Schaltkreise
5.1.2 Hybride CMOS-Technologie
5.1.3 Strukturierung der Finne
5.1.4 Geometrieabhängiges Dotierungsprofil
5.2 Charakterisierung des elektrischen Verhaltens
5.2.1 Stationäres Verhalten
5.2.2 Kurzkanaleffekte und Gatesteuerung
5.2.3 Eckeneffekt
5.2.4 Eckenimplantation
5.2.5 Finnengeometrie
5.2.6 Dynamisches Verhalten
5.3 Optimierung der Tri-Gate-Struktur
5.3.1 Gestaltung der epitaktischen Source-Drain-Gebiete
5.3.2 Mechanisch verspanntes Isolationsoxid
5.3.3 Substratorientierung
6 Transistoren mit vollständig verarmtem Kanal
6.1 Ultra-Dünne-SOI-MOSFETs
6.1.1 Prozessintegration
6.1.2 Charakterisierung des elektrischen Verhaltens
6.2 FinFETs
6.2.1 Prozessintegration
6.2.2 Charakterisierung des elektrischen Verhaltens
6.3 Vertikale Nanowire-MOSFETs
6.3.1 Prozessintegration
6.3.2 Strukturierung des Aktivgebiets
6.3.3 Charakterisierung des elektrischen Verhaltens
6.3.4 Asymmetrisches Dotierungsprofil
6.3.5 Mechanische Verspannung
7 Skalierung und statistische Schwankungen der Strukturen
7.1 Skalierung zur 14 nm-Technologie
7.1.1 Leistungsfähigkeit
7.1.2 Kurzkanalverhalten und Steuerfähigkeit
7.2 Statistische Schwankungen
7.2.1 Impedanz-Feld-Methode
7.2.2 Zufällige Dotierungsfluktuation
7.2.3 Fixe Ladungen im Oxid
7.2.4 Metall-Gate-Granularität
7.2.5 Geometrische Variationen
7.2.6 Kombination der Störquellen
8 Zusammenfassung und Ausblick
Anhang
Literaturverzeichnis
Danksagung
Acknowledgement
|
4 |
Junction Based Gallium Nitride Power DevicesMa, Yunwei 05 September 2023 (has links)
Power electronics plays an important role in many energy conversion applications in modern society including consumer electronics, data centers, electric vehicles, and power grids, etc. The key components of power electronic circuits are power semiconductor devices including diodes and transistors, which determine the performance of power electronics circuits. Traditional power devices are based on the semiconductor silicon (Si), which have already reached the silicon's material limit. Gallium nitride (GaN) is a wide bandgap semiconductor with high electron mobility and high critical electric field. GaN-based power devices promise superior device performance over the Si-based counterpart.
The primary design target of a unipolar power device is to achieve low on-resistance and high breakdown voltage. Although GaN high electron mobility transistor (HEMT) is commercially available in a voltage class from 15 V to 900 V, the performance of GaN devices is still far below the GaN material limit, due to several reasons: 1) To achieve the normally-off operation in a GaN HEMT, the density of two-dimensional electron gas (2DEG) channel cannot be too high; this limits the on-resistance reduction in the access region. 2) The gate capacitance of GaN HEMT is usually low so that the carrier concentration in the channel underneath the gate is relatively low, limiting the on-resistance reduction in the gated channel region. 3) The electric-field distribution in the drift region is not uniform, resulting in a limited breakdown voltage. We proposed to use the junction-based structure in GaN power devices to address the above problems and fully exploit GaN's material properties.
The first part of this dissertation characterizes nickel oxide (NiO) as a p-type material to construct the junction-based GaN power devices. Although the homogenous p-GaN/n-GaN junction is preferred in many devices, the selective-area, p-GaN regrowth can lead to excessive leakage current; in comparison, the p-NiO/n-GaN junction is stable without leakage. This section describes the optimization of NiO deposition as well as the NiO characterization. Although acceptor in NiO is not generated by impurity doping, the acceptor concentration modulation is realized by tuning the O2 partial pressure during the sputtering process. Practical breakdown electric field is also characterized and confirmed to be higher than GaN. These results provide the design guidelines for NiO-GaN junction-based power devices.
The second part of this dissertation demonstrates the 3D NiO-GaN junction gate to improve the GaN HEMT's on-resistance. The 3D junction gate structure enables a high carrier concentration under the gate region in the device on-state. Meanwhile, the strong depletion effect of the junction-based gate allows for a robust normally-off operation; as a result, the GaN wafer with a higher 2DEG concentration can be used to achieve both normally-off and low on-state resistance in HEMT devices. Simulation is also performed to project the performance space of trigate GaN junction HEMTs using the p-GaN instead of NiO.
The third part of this dissertation presents the application of the p-GaN/n-GaN junction in the drift region of the multi-channel lateral devices to achieve the high breakdown voltage. Here p-GaN is grown in-situ with the multi-channel AlGaN/GaN structure, and there is no leakage problem. The structure is designed to achieve charge balance between the acceptor in p-GaN and the net donor in the multichannel AlGaN/GaN. This design enables a uniform electric field distribution and breakdown voltage over 10 kV.
The fourth part of this dissertation presents the application of the p-NiO/n-GaN junction in vertical superjunction (SJ) devices. We show the design and simulation of this heterojunction structure in a SJ and confirm the uniform electric field and high breakdown voltage under the charge balance. Then the device fabrication is presented in detail, which mainly comprises the deep GaN trench etch, NiO self-aligned lift off, and photoresist trench planarization. The optimized device shows a trade-off between its drift region specific on-resistance versus breakdown that exceeds the 1D GaN's limit.
The last part of this dissertation is exploring the design and fabrication of p-GaN/n-GaN based SJ devices. First, the challenges in p-GaN regrowth especially the introduction of interface impurities are discussed, followed by device simulation and modeling to optimize the SJ performance considering these interface impurities. The activation of regrown p-GaN in deep trenches is more difficult than planar p-GaN, and we present the characterization and physical model for the activation of the deep buried p-GaN. Last, the results of p-GaN filling regrowth and the acceptor concentration calibration in the lightly doped p-GaN are presented and discussed.
In summary, our work combines experimental device fabrication and characterization, TCAD simulation, and device modeling to demonstrate the benefit of multi-dimensional, junction-based GaN power devices as compared to the traditional GaN power devices. The junction-based structure at gate region can provides stable normally-off operation and low on-resistance. When being applied to the drift region, the multidimensional junction structure can push the device specific on-resistance versus breakdown voltage trade-off near or even exceeding the material limit. These results will advance the performance and application spaces of GaN power devices. / Doctor of Philosophy / Power electronics plays an important role in many energy conversion applications in modern society including consumer electronics, data centers, electric vehicles, and power grids, etc. The key components of power electronic circuits are power semiconductor devices including diodes and transistors, which determine the performance of power electronics circuits. Traditional power devices are based on the semiconductor silicon (Si), which have already reached the silicon's material limit. Gallium nitride (GaN) is a wide bandgap semiconductor with high electron mobility and high critical electric field. GaN-based power devices promise superior device performance over the Si-based counterpart.
Currently, GaN power devices performance is still far below its material limit due to several reasons: 1) To achieve normally-off operation, the carriers at gate region need to be fully depleted at zero bias. Due to a relatively limited depletion capability of the planar gate, the normally-off operation poses an upper limit on the channel carrier density, which increases the device on-resistance. 2) The electric field distribution is not uniform when the device is blocking off-state voltage, and the crowded electric field will cause the device premature breakdown.
This work proposed to use multi-dimensional, p-n junction-based device structure to overcome the above challenges. The devices with diverse structures are fabricated, characterized, and compared with the commercially available devices. The multi-dimensional, junction-based gate structure provides strong electrostatic control to realize normally-off operation and allow for higher carrier concentration and lower on-resistance. The devices with multi-dimensional, junction-based drift region enables the uniform electric field distribution at the device off-state, allowing devices to block high voltage without compromising the on-state resistance. Examples of such devices investigated in this dissertation include the tri-gate junction transistors, reduced-surface-field (RESURF) diodes, and superjunction diodes.
In summary, this work demonstrates the multi-dimensional, junction-based device structure to overcome the performance limitations of planar devices and fully exploit GaN's material benefits for power devices. The multi-dimensional, junction-based devices are experimentally fabricated and characterized, manifesting the superior performance over traditional GaN devices. This work will significantly boost the performance and application space of GaN power devices.
|
5 |
Fabrication, characterization, and modeling of metallic source/drain MOSFETsGudmundsson, Valur January 2011 (has links)
As scaling of CMOS technology continues, the control of parasitic source/drain (S/D) resistance (RSD) is becoming increasingly challenging. In order to control RSD, metallic source/drain MOSFETs have attracted significant attention, due to their low resistivity, abrupt junction and low temperature processing (≤700 °C). A key issue is reducing the contact resistance between metal and channel, since small Schottky barrier height (SBH) is needed to outperform doped S/D devices. A promising method to decrease the effective barrier height is dopant segregation (DS). In this work several relevant aspects of Schottky barrier (SB) contacts are investigated, both by simulation and experiment, with the goal of improving performance and understanding of SB-MOSFET technology:First, measurements of low contact resistivity are challenging, since systematic error correction is needed for extraction. In this thesis, a method is presented to determine the accuracy of extracted contact resistivity due to propagation of random measurement error.Second, using Schottky diodes, the effect of dopant segregation of beryllium (Be), bismuth (Bi), and tellurium (Te) on the SBH of NiSi is demonstrated. Further study of Be is used to analyze the mechanism of Schottky barrier lowering.Third, in order to fabricate short gate length MOSFETs, the sidewall transfer lithography process was optimized for achieving low sidewall roughness lines down to 15 nm. Ultra-thin-body (UTB) and tri-gate SB-MOSFET using PtSi S/D and As DS were demonstrated. A simulation study was conducted showing DS can be modeled by a combination of barrier lowering and doped Si extension.Finally, a new Schottky contact model was implemented in a multi-subband Monte Carlo simulator for the first time, and was used to compare doped-S/D to SB-S/D for a 17 nm gate length double gate MOSFET. The results show that a barrier of ≤ 0.15 eV is needed to comply with the specifications given by the International Technology Roadmap for Semiconductors (ITRS). / QC 20111206
|
6 |
Analytical Modeling Of Quantum Thershold Voltage For Short Channel Multi Gate Silicon Nanowire TransistorsKumar, P Rakesh 07 1900 (has links)
Silicon nanowire based multiple gate metal oxide field effect transistors(MG-MOSFET) appear as replacements for conventional bulk transistors in post 45nm technology nodes. In such transistors the short channel effect(SCE) is controlled by the device geometry, and hence an undoped (or, lightly doped) ultra-thin body silicon nanowire is used to sustain the channel. The use of undoped body also solves several issues in bulk MOSFETs e.g., random dopant fluctuations, mobility degradation and compatibility with midgap metal gates. The electrostatic integrity of such devices increases with the scaling down of the body thickness. Since the quantization of electron energy cannot be ignored in such ultra-thin body devices, it is extremely important to consider quantum effects in their threshold voltage models.
Most of the models reported so far are valid for long channel double gate devices. Only Munteanu et al. [Journal of non-crystalline solids vol 351 pp 1911-1918 2005] have reported threshold voltage model for short channel symmetric double gate MOSFET, however it involves unphysical fitting parameters. Only Munteanu et al.[Molecular simulation vol 31 pp 839-845 2005] reported threshold voltage model for quad gate transistor which is implicit in nature. On the other hand no modeling work has been reported for other types of MG-MOSFETs (e.g., tri gate, cylindrical body)apart from numerical simulation results.
In this work we report physically based closed form quantum threshold voltage models for short channel symmetric double gate, quad gate and cylindrical body gate-all-around MOSFETs. In these devices quantum effects aries mainly due to the structural confinement of electron energy. Proposed models are based on the analytical solution of two or three-dimensional Poisson equation and one or two-dimensional Schrodinger equation depending on the device geometries. Judicial approximations have been taken to simplify the models in order to make them closed form and efficient for large scale circuit simulation. Effort has also been put to model the quantum threshold voltage of tri gate MOSFET. However it is found that the energy quantization in tri gate devices are mainly due to electronic confinement and hence it is very difficult to develop closed form analytical equations for the threshold voltage. Thus in this work the modeling of tri gate devices have been limited to long channel cases. All the models are validated against the professional numerical simulator.
|
7 |
A comprehensive study of 3D nano structures characteristics and novel devicesZaman, Rownak Jyoti 10 April 2012 (has links)
Silicon based 3D fin structure is believed to be the potential future of current semiconductor technology. However, there are significant challenges still exist in realizing a manufacturable fin based process. In this work, we have studied the effects of hydrogen anneal on the structural and electrical characteristics of silicon fin based devices: tri-gate, finFET to name a few. H₂ anneal is shown to play a major role in structural integrity and manufacturability of 3D fin structure which is the most critical feature for these types of devices. Both the temperature and the pressure of H₂ anneal can result in significant alteration of fin height and shape as well as electrical characteristics. Optimum H₂ anneal is required in order to improve carrier mobility and device reliability as shown in this work. A new hard-mask based process was developed to retain H₂ anneal related benefit while eliminating detrimental effects such as reduction of device drive current due to fin height reduction. We have also demonstrated a novel 1T-1C pseudo Static Random Access Memory (1T-1C pseudo SRAM) memory cell using low cost conventional tri-gate process by utilizing selective H₂ anneal and other clever process techniques. TCAD-based simulation was also provided to show its competitive advantage over other types of static and dynamic memories in 45nm and beyond technologies. A high gain bipolar based on silicon fin process flow was proposed for the first time that can be used in BiCMOS technology suitable for low cost mixed signal and RF products. TCAD-based simulation results proved the concept with gain as high 100 for a NPN device using single additional mask. Overall, this work has shown that several novel process techniques and selective use of optimum H₂ anneal can lead to various high performance and low cost devices and memory cells those are much better than the devices using current conventional 3D fin based process techniques. / text
|
Page generated in 0.0375 seconds