• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 8
  • 3
  • 3
  • Tagged with
  • 55
  • 55
  • 55
  • 13
  • 13
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conversion of a Molecular Beam Epitaxy System for the Growth of 6.1 Angstrom Semiconductors

January 2012 (has links)
abstract: A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that are to be used in novel optoelectronic devices that take advantage of the nearly continuous bandgap availability between 0 eV and 3.4 eV. These devices include multijunction solar cells and multicolor detectors. The MBE system upgrade involved the conversion of a former III-V chamber for II-VI growth. This required intensive cleaning of the chamber and components to prevent contamination. Special features including valved II-VI sources and the addition of a cold trap allowed for the full system to be baked to 200 degrees Celsius to improve vacuum conditions and reduce background impurity concentrations in epilayers. After the conversion, the system was carefully calibrated and optimized for the growth of ZnSe and ZnTe on GaAs (001) substrates. Material quality was assessed using X-ray diffraction rocking curves. ZnSe layers displayed a trend of improving quality with decreasing growth temperature reaching a minimum full-width half-maximum (FWHM) of 113 arcsec at 278 degrees Celsius. ZnTe epilayer quality increased with growth temperature under Zn rich conditions attaining a FWHM of 84 arcsec at 440 degrees Celsius. RHEED oscillations were successfully observed and used to obtain growth rate in situ for varying flux and temperature levels. For a fixed flux ratio, growth rate decreased with growth temperature as the desorption rate increased. A directly proportional dependence of growth rate on Te flux was observed for Zn rich growth. Furthermore, a method for determining the flux ratio necessary for attaining the stoichiometric condition was demonstrated. / Dissertation/Thesis / M.S. Electrical Engineering 2012
12

Segregação de índio em cristais Ga1-xInxSb dopados com telúrio obtidos pelo método Bridgman vertical

Klein, Cândida Cristina January 2016 (has links)
Os compostos semicondutores ternários, dentre eles o Ga1-xInxSb, têm sido objeto de interesse de pesquisadores e da indústria microeletrônica devido à possibilidade de ajuste da constante de rede, assim como a correspondente modificação da banda proibida de energia e do intervalo de emissão e absorção óptica, com a variação da fração molar de x. A flexibilidade destas propriedades estruturais torna este composto apropriado como substratos para epitaxias de outros compostos ternários e quaternários, na formação de mono e heterojunções. A maneira mais econômica para obtenção de substratos de materiais semicondutores é através do crescimento de cristais a partir da fase líquida. Porém, os parâmetros que regem a obtenção de lingotes de Ga1-xInxSb com qualidade comercial, a partir da fase líquida, ainda não estão bem definidos. O índio tende a segregar para o líquido, pois seu coeficiente de segregação é menor que a unidade (k < 1), resultando num perfil composicional variado ao longo do lingote. Como os binários GaSb e InSb apresentam configurações de defeitos intrínsecos que originam condutividades de tipos opostos, tipo p e tipo n, respectivamente, a mudança na composição da liga, durante o crescimento, provavelmente resulta na modificação da concentração de cada um destes defeitos. A dopagem com telúrio consiste numa alternativa para minimizar a segregação do índio e diminuir a densidade dos defeitos pontuais, melhorando a qualidade estrutural de cristais de Ga1-xInxSb obtidos através do método Bridgman convencional. Desta forma foram crescidos cristais ternários Ga1-xInxSb, com e sem agitação do líquido durante a síntese, com fração molar inicial de índio de 10% e 20%, alguns deles dopados com 1020 átomos/cm3 de telúrio, pelo método Bridgman vertical. A caracterização estrutural em termos de formação de defeitos lineares, interfaciais e volumétricos foi realizada através de imagens obtidas por microscopia óptica, eletrônica de varredura e de transmissão. A homogeneidade composicional e distribuição de fases foi avaliada através de medidas de espectroscopia por dispersão de energia. Medidas de resistividade e efeito Hall foram utilizadas para a caracterização elétrica, enquanto que a transmitância óptica e a banda proibida de energia foram avaliadas por espectrometria FTIR. Os padrões de difração obtidos através da microscopia eletrônica de transmissão foram utilizados para avaliar a cristalinidade das amostras e determinar o parâmetro de rede. Os resultados obtidos indicam que o telúrio atua de forma compensatória, minimizando a segregação de índio e contribuindo para a homogeneidade composicional e redução de defeitos, principalmente de discordâncias. Além disso, altera a condutividade do Ga1-xInxSb para tipo n, mesmo em frações molares de In inferiores a x = 0,5, diminuindo o número de cargas positivas na rede atribuídas aos defeitos tipo GaSb e VGaGaSb e, desta forma, aumenta a concentração de portadores de carga e reduz a resistividade. Na condição de alta dopagem, reduz a transmitância óptica no infravermelho e aumenta a banda proibida de energia através do efeito Burstein-Moss. A avaliação de cristais de Ga1-xInxSb, dopados e não dopados, crescidos pelo método Bridgman convencional contribuiu para o entendimento do comportamento de dopantes em compostos semicondutores ternários. / Ternary compound semiconductors, including Ga1-xInxSb, have been subject of interest of researchers and microelectronics industry because of the possibility of adjusting the lattice constant, as well as the corresponding modification in the band gap energy, and in the optical absorption and emission range, by varying the mole fraction x. The flexibility of their structural properties makes this compound suitable as substrates for epitaxy of other ternary and quaternary compounds, in the formation of mono- and heterojunctions. The most economical way to obtain semiconductor substrates is by crystal growth from the liquid phase. However, the parameters governing the outcoming of Ga1-xInxSb ingots with commercial quality, from liquid phase, are not well defined. Indium tends to segregate to the liquid, since its segregation coefficient is less than the unity (k < 1), resulting in a varied compositional profile along the ingot. As the binary GaSb and InSb have intrinsic defects configurations that originate opposite conductivities, type p and type n, respectively, the change in the alloy composition, while growing, probably results in a modification of the concentration on each of these defects. Doping with tellurium is an alternative to minimize the indium segregation and decrease the density of point defects, therefore improving the structural quality of Ga1-xInxSb crystals obtained through the conventional Bridgman method. Thus, ternary Ga1-xInxSb crystals were grown by vertical Bridgman method with and without stirring the melt during the synthesis, with 10% and 20% initial molar fraction of indium and some of them were tellurium-doped at 1020 atoms/cm3. The structural characterization regarding linear, interfacial, and volumetric defects formation was performed by using images obtained through optical, scanning and transmission electron microscopy. The compositional homogeneity and phase distribution was assessed by energy-dispersive spectroscopy measurements. Resistivity and Hall Effect measurements were used for the electrical characterization, while the optical transmittance and the band gap energy were examined by FTIR spectroscopy. Diffraction patterns obtained by transmission electron microscopy were used to evaluate the crystallinity of the samples and determine the lattice parameter. The results indicate that tellurium acts in a compensatory way, minimizing indium segregation and contributing to the compositional homogeneity and defect reduction, especially in dislocations. In addition, it changes the conductivity of Ga1-xInxSb to n-type, even in mole fraction of In lower than x = 0.5, reducing the number of positive charges on the network assigned to GaSb and VGaGaSb defects, thus increasing the concentration of charge carriers and reducing the resistivity. In high doping condition, it reduces the optical transmittance in the infrared region and increases the energy of the band gap by the Burstein-Moss Effect. The evaluation of Ga1-xInxSb crystals, doped and undoped, grown by the conventional Bridgman method contributed to the understanding of dopants behavior in ternary compound semiconductors.
13

Structural and Optical Properties of III-V Semiconductor Materials for Photovoltaics and Power Electronic Applications

January 2020 (has links)
abstract: This dissertation focuses on the structural and optical properties of III-V semiconductor materials. Transmission electron microscopy and atomic force microscopy are used to study at the nanometer scale, the structural properties of defects, interfaces, and surfaces. A correlation with optical properties has been performed using cathodoluminescence. The dissertation consists of four parts. The first part focuses on InAs quantum dots (QDs) embedded in a GaInP matrix for applications into intermediate band solar cells. The CuPt ordering of the group-III elements in Ga0.5In0.5P has been found to vary during growth of InAs QDs capped with GaAs. The degree of ordering depends on the deposition time of the QDs and on the thickness of the capping layer. The results indicate that disordered GaInP occurs in the presence of excess indium at the growth front. The second part focuses on the effects of low-angle off-axis GaN substrate orientation and growth rates on the surface morphology of Mg-doped GaN epilayers. Mg doping produces periodic steps and a tendency to cover pinholes associated with threading dislocations. With increasing miscut angle, the steps are observed to increase in height from single to double basal planes, with the coexistence of surfaces with different inclinations. The structural properties are correlated with the electronic properties of GaN epilayers, indicating step bunching reduces the p-type doping efficiency. It is also found that the slower growth rates can enhance step-flow growth and suppress step bunching. The third part focuses on the effects of inductively-coupled plasma etching on GaN epilayers. The results show that ion energy rather than ion density plays the key role in the etching process, in terms of structural and optical properties of the GaN films. Cathodoluminescence depth-profiling indicates that the band-edge emission of etched GaN is significantly quenched. The fourth part focuses on growth of Mg-doped GaN on trench patterns. Anisotropic growth and nonuniform acceptor incorporation in p-GaN films have been observed. The results indicate that growth along the sidewall has a faster growth rate and therefore a lower acceptor incorporation efficiency, compared to the region grown on the basal plane. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
14

Analyse de la structure locale et propriétés optiques de semiconducteurs nitrures pour le développement des diodes électroluminescentes efficaces au-delà du vert. / Analysis of the local structure and optical properties of nitrides semiconductors for LEDs beyond the green wavelength range

Chery, Nicolas 14 December 2018 (has links)
Les puits quantiques InGaN/GaN montrent la plus grande efficacité connue dans le bleu-UV et le défi actuel dans ce type de matériau est de pousser leur émission vers les grandes longueurs d’ondes. Ceci serait possible en augmentant la composition en indium, mais il faut alors gérer les contraintes résultantes. Ce travail a mis en œuvre la microscopie électronique en transmission et la diffraction des rayons X pour déterminer la composition chimique à l’intérieur des couches InGaN, le taux de relaxation et le type de défauts présents. Les résultats montrent qu’il n’y a pas de fluctuations de composition en indium dans les couches d’InGaN étudiées avec des taux d’indium de l’ordre de 20%. Ainsi, la différence d’émission des échantillons pourrait s’expliquer par la variation d’épaisseur des puits quantiques InGaN et laprésence de défauts. En effet, plusieurs types de défauts ont été observés et caractérisés tels que les pinholes ou des domaines de défauts plans selon leur origine. Dans les multicouches InGaN/GaN avec couches AlGaN compensatrices de contrainte,la diffraction des rayons X a montré que lorsque l’épaisseur des couches d’AlGaN augmente en gardant constante l’épaisseur entre les couches actives d’InGaN (avec une valeur d’environ 16-17 nm), les puits quantiques sont totalement contraints dans le plan de croissance et en dehors. Par microscopie électronique, nous montrons queleur relaxation se fait par formation aussi bien de défauts en domaines plans que de dislocation de type a. Ces dislocations se propagent des pits quantiques vers la surface, et la densité des défauts augmente avec l’épaisseur des couches d’AlGaN. / InGaN/GaN quantum wells show the highest known emission efficiency in UV-blue and the current challenge is to push to longer wavelengths. This would be possible by increasing the indium composition but the challenge becomes how to handle the resulting strains. This work has combined transmission electron microscopy and Xray diffraction in order to determine the relaxation rates, the local chemical composition and defects formation in these systems. The results show that there are no composition fluctuations in these InGaN layers where the indium content was around 20%. Therefore, the differences in emission may be explained by the changes in quantum wells thicknesses and/or the presence of defects. Indeed, several types of defects have been observed and characterized, such as pinholes or planar defect domains. For InGaN/GaN quantum wells with strain compensating AlGaN layers, Xray diffraction showed that, when the AlGaN layer thickness increases, keeping constant the spacing between InGaN layers (around 16-17 nm), the quantum wellsare totally strained in and out the growth plan. Using transmission electron microscopy, it is shown that the relaxation occurs through the formation of domains as well as a type dislocations. The dislocations propagate from the quantum well tothe surface and the density of the defects increases with the thickness of the AlGaN layers.
15

Semiconductor Materials and Devices for High Efficiency Broadband and Monochromatic Photovoltaic Energy Conversion

Beattie, Meghan 27 July 2021 (has links)
This thesis addresses barriers to the widespread adoption of high-efficiency photovoltaic devices through the use of innovative semiconductor materials and device design. The feasibility of various strategies is explored through experimental characterization and modeling of semiconductor materials and devices. High-efficiency photovoltaic devices are made from epitaxially grown III-V semiconductor materials. Epitaxial devices are highly sensitive to lattice mismatch between the epi-layers and the substrate, requiring sophisticated substrate engineering or growth strategies to access materials outside of the lattice-matched regime. One promising strategy involves the electrochemical porosification of germanium on a lattice-mismatched silicon substrate to create a compliant interface for high-quality epitaxial growth of Ge, GaAs, and other equivalent-bandgap III-V semiconductors on silicon. This results in a threading dislocation density of ~10^4 cm^-2, a reduction of 4 to 6 orders of magnitude compared to direct epitaxy of germanium on silicon. This technology could enable the development of highly efficient III-V multi-junction photovoltaic devices on cost-effective silicon substrates that benefit from well-established commercial supply chains. In the first part, I present characterization of the electrical properties of porous germanium. Experimental measurements revealed conductivities ranging from 0.6 to 33 (x10^-3) Ohm^-1 cm^-1, depending on the morphology. The relationship between the electrical properties and the morphology is described using an electrostatic model that can be generalized to other porous semiconductors including silicon. For a compliant interface designed to integrate a standard triple-junction solar cell onto a silicon substrate, the porous Ge/Si layers are predicted to introduce < 0.01 Ohm cm^2 of series resistance to the device, which is sufficiently low for concentrated photovoltaic applications. Optoelectronic device modelling of the triple-junction solar cell on silicon demonstrates that III-V triple-junction solar cells fabricated on silicon using this compliant Ge/Si porous interface could achieve 93% of the efficiency of a comparable defect-free device. The remainder of this thesis is concerned with the design and characterization of photovoltaic devices optimized for monochromatic illumination, known as photonic power converters. Most commercially available photonic power converters are based on GaAs and are suitable for short-range photonic power transmission through optical fiber (< 1 km). Extended reach power-over-fiber systems require the use of photonic power converters that are compatible with longer-wavelength light, which travels further in optical fiber. One candidate material for this application is the semiconductor quaternary alloy InAlGaAs lattice-matched to InP for photonic power converter operation in the telecommunications O-band, near 1310 nm. I describe the design and characterization of multi-junction InAlGaAs/InP photonic power converters grown by molecular beam epitaxy, including the analysis of material properties and characterization of single- and dual-junction devices under 1319-nm laser illumination. Optically thick devices are found to be diffusion-limited and device simulations suggest that non-radiative recombination is significant. The performance of InAlGaAs tunnel diodes, which act as interconnections for the absorbing junctions within a multi-junction device, is demonstrated to be highly dependent on the growth temperature, with peak tunneling current densities exceeding 1200 A/cm^2 in the best measured devices. In addition to molecular beam epitaxy-grown InAlGaAs/InP devices, I also characterize single-junction O-band photonic power converters grown by metal-organic vapour phase epitaxy with two alternative absorber materials. A lattice-matched InGaAsP/InP device is compared to a more cost-effective lattice-mismatched GaInAs device grown on GaAs using a metamorphic buffer layer. Both devices are measured under 1319-nm laser illumination with a variety of beam sizes and peak efficiencies of 52.9% and 48.8% were measured for the InGaAsP/InP and the metamorphic-GaInAs/GaAs devices respectively. At illumination powers exceeding 100 mW, the performance begins to degrade with increasingly non-uniform illumination, indicating that illumination profiles should be as uniform as possible to maximize device performance.
16

Low Carbon n-GaN Drift Layers for Vertical Power Electronic Devices

Carlson, Eric Paul 14 July 2023 (has links)
GaN holds significant potential as a material for vertical p-n diodes, enabling the realization of devices with reverse breakdown voltages of 5 kV or higher. Carbon serves as the primary compensating dopant in the growth process, incorporated into GaN during metalorganic chemical vapor deposition (MOCVD) growth. The level of carbon incorporation depends on several factors, including growth rate, ammonia flow, temperature, pressure, and trimethylgallium (TMGa) flow. Through guided empirical modeling, it was demonstrated that the carbon incorporation in GaN growth could be predicted using a single parameter based on the ratio of ammonia flow to the growth rate. This model accurately predicts carbon concentrations ranging from 1x1017 to 5x1014 cm-3 while allowing for maximized growth rates. Other extrinsic dopants have either been reduced below the threshold of consideration or modeled using similar single-parameter relationships. By identifying the dominant extrinsic dopants and accounting for them, an intrinsic defect with a concentration of 2.2x1015 cm-3 was identified. By combining these relationships, growth conditions for n-GaN were optimized, resulting in electron concentrations as low as 1x1015 cm-3. Leveraging these techniques, p-n diodes were grown, achieving a reverse breakdown voltage as high as 3.1 kV. / Doctor of Philosophy / Power electronic devices based on vertical GaN have the potential to revolutionize applications such as electric vehicles, solar charging systems, and the smart grid. However, there are significant materials challenges that need to be addressed in order to realize these devices. They must be extremely pure and extremely thick. Unfortunately, the primary source of these materials also contains carbon, which can negatively impact purity. To overcome this challenge, an empirical model for the growth process has been developed. This model enables independent control over the carbon source and the removal of carbon, using a single parameter. By leveraging this model, it becomes possible to optimize the trade-off between high purity, high growth rates, and ideal electronic properties. Using these techniques, devices were grown with next-generation levels of performance at minimal time and cost.
17

Development and Testing of the Experimental Setup for Characterization of Semiconductors Using Reflectance Spectroscopy

Ramani, Jayanth 26 July 2011 (has links)
No description available.
18

Um estudo sobre centros DX em AlxGa1-xAs / On DX centers in A1xGa1-xAs

Scalvi, Luis Vicente de Andrade 27 August 1991 (has links)
É feito um resumo dos principais modelos criados para se explicar as intrigantes propriedades do centro DX e atualizar o problema. O decaimento da fotocondutividade persistente (PPC) é medido em AlxGa1-x As dopado com Si e se discute a validade dos modelos em função da cinética de captura dos elétrons pelos centros DX. Boa concordância com o modelo de Chadi e Chang é encontrada desde que se postule a existência de um nível doador mais raso. O crescimento por MBE assim como todo o processamento de amostras para os experimentos realizados é descrito sinteticamente. É discutido também o problema dos contatos a baixa temperatura e a possível influência dos centros DX nos desvios do comportamento ôhmico observados. Inclui-se também a descoberta da. fotocondutividade persistente em AlxGa1-xAs dopado com Pb, que também é relacionado à existência dos centros DX. / A short discussion about the main models created to explain the striking properties of the DX center is done in order to bring the problem up-to-date. The decay of persistent photoconductivity is measured and it is analyzed as a function of the kinetics of electron trapping by DX centers in Si-doped AlxGa1-xAs, according to these models. Good agreement with Chadi and Chang\'s model is found as long as we postulate the existence of a shallower donor. The M.B.E. growth as well as the whole sample processing is shortly described. It in siso diacussed the problem of low temperature contacts and the possible influence of DX centers in the deviation from ohmic behavior. Persistent Photoconductivity has been found in Pb-doped AlxGa1-xAs and it is also related to the DX center existence.
19

Efeitos de tamanho finito e de interfaces em super-redes InP/In IND. 0.53 Ga IND. 0.47As. / Effects of finite size and super-network interfaces in InP / \'In IND. 0:53 \'\' Ga IND. 12:47 \'Overpriced

Hanamoto, Luciana Kazumi 14 December 2001 (has links)
Neste trabalho, estudamos as propriedades eletrônicas e estruturais de super-redes InP/In IND. 0.53 Ga IND. 0.47As dopadas fortemente com Si (densidade equivalente no bulk superior a 4.4 x 10 POT. 18cm POT. -3). O espectro de Fourier das oscilações de Shubnikov-de Haas apresenta um dubleto característico de elétrons que populam uma minibanda de energia, assim como uma freqüência de oscilação associada a elétrons confinados em uma camada superficial bidimensional (elétrons de Tamm). Verificamos que, para descrever o espectro de energia dos elétrons da minibanda, o modelo de Kronig-Penney é em geral suficiente porém, para descrever adequadamente os estados de Tamm é necessário recorrer a um cálculo auto-consistente completo. A boa resolução do dubleto associado aos elétrons que populam a minibanda de energia permitiu extrair as mobilidades quânticas dos elétrons associados aos hodógrafos extremais (\"cintura\" e \"pescoço\") da mini-superfície de Fermi. O tratamento de dados foi efetuado com a utilização de procedimentos especialmente desenvolvidos, que apresentam a vantagem de não necessitar da utilização de filtros de Fourier sofisticados. A detecção do estado de Tamm nas oscilações de Shubnikov-de Haas é inétida por se tratar de estados de Tamm degenerados. Por ser a mobilidade quântica dos elétrons de Tamm quase duas vezes maior do que a mesma mobilidade para os elétrons da minibanda, em campos magnéticos fracos as oscilações de Shubnikov-de Haas são dominadas pelos elétrons de Tamm, apesar da quantidade de elétrons de Tamm corresponder a apenas em torno de 10% do total de portadores livres em nossas amostras. As super-redes InP/In IND. 0.53 Ga IND. 0.47As:Si apresentam, também, grande redução de portadores livres com a diminuição do período das super-redes. A perda de portadores livres é de 60% quando o período é diminuído em 20%. Esta redução está correlacionada com a quantidade de átomos de ) dopantes que recai na camada interfacial de InAs IND. X P IND. 1-X que se forma quando InP é depositado sobre In IND. 0.53 Ga IND. 0.47As. Um estudo de um conjunto de 8 amostras nos permitiu estimar que a espessura da camada interfacial é de aproximadamente 20 ANGSTRONS. Os dados experimentais indicam que os átomos de Si que recaem nas camadas interfaciais, ao invés de formarem doadores rasos, formam centros profundos com energia de ativação superior a 50 meV. / In this work the electronic and structural properties of InP/In IND. 0.53 Ga IND. 0.47As superlattices heavily doped with Si (bulk equivalent density greater than 4.4 x 10 POT. 18cm POT. -3) were studied. The Fourier spectrum of the Shubnikov-de Haas oscillations presents a double peak characteristic of electrons which populate the first miniband of the energy spectrum, and an additional peak associated to electrons confined in a two-dimensional surface layer (Tamm electrons). We verified that the Kronig-Penney model is, in general, a good approximation to describe the energy spectrum of electrons in the miniband. However, to describe adequately the Tamm states, it is necessary to resort to a full self-consistent calculation of the energy levels in the effective mass approximation. The well-resolved doublet associated to the electrons in the miniband allowed us to extract the quantum mobilities associated to both extremal orbits of the Fermi mini-surface (belly and neck). The data analysis was done by using specially developed procedures, which have the advantage of not requiring the use of sophisticated Fourier filters. The detection of Tamm states throught Shubnikov-de Haas oscillations was done for the first time in superlattices in which the Tammm states are degenerate. On account of the fact that the quantum mobility of the Tamm electrons is about a factor of two greater than the quantum mobility of the miniband electrons, the Shubnikov-de Haas oscillations are dominated by electrons from the Tamm states, especially at weak magnetic fields, despite of the fact that the amount of Tamm electrons is only about 10% of the total amount of free carriers in our sample. The InP/In IND. 0.53 Ga IND. 0.47As:Si superlattices also display a strong reduction in the amount of free carriers when the period of the superlattice decreases. This reduction reaches 60% when the superlatticess period is decreased by only 20%. This reduction correlates with the amount of doping atoms that fall into the interfacial layer InAs IND. X P IND. 1-X which is formed when InP is grown on In IND. 0.53 Ga IND. 0.47As. A study of a set of 8 samples allowed us to estimate that the interfacial layer is approximately 20 ANGSTRONS thick. The experimental data indicate that the Si atoms which fall into the interfacial form deep levels with an activation energy larger than 50 meV.
20

Les fils photoniques : une géométrie innovante pour la réalisation de sources de lumière quantique brillantes / Photonic nanowires : a new geometry to realize bright sources of quantum light

Malik, Nitin Singh 21 November 2011 (has links)
Cette thèse présente la réalisation d'une source de photons uniques basée sur une boîte quantique InAs intégrée dans un fil photonique. Un fil photonique est un guide d'onde monomode constitué d'un matériau de fort indice de réfraction (GaAs dans notre cas). Pour un diamètre optimal voisin de 200 nm, pratiquement toute l'émission spontanée de l'émetteur (longueur d'onde dans le vide 950 nm) est dirigée vers le mode guidé fondamental. Le couplage des photons guidés à un objectif de microscope est ensuite optimisé en travaillant la géométrie des extrémités du fil. Ce dernier repose ainsi sur un miroir intégré et présente une extrémité supérieure en forme de taper. Cette approche non résonante combine de très bonnes performances à une grande tolérance sur la longueur d'onde de l'émetteur intégré. Cette thèse discute la physique des fils photoniques, la réalisation des structures en salle blanche et les résultats obtenus lors de la caractérisation optique. En particulier, nous avons réalisé une source combinant une efficacité record (0.72, état de l'art à 0.4) et une émission de photons uniques très pure. Nous discutons également le contrôle de la polarisation obtenu dans des fils de section elliptique. / This thesis presents the realization of an efficient single-photon source based on an InAs quantum dot integrated in a photonic nanowire. A photonic nanowire is a monomode waveguide made of a high refractive index material (GaAs in our case). For an optimal wire diameter around 200 nm, nearly all the spontaneous emission of the embedded single-photon emitter (free space wavelength 950 nm) is funnelled into the fundamental guided mode. In addition, the outcoupling efficiency of the guided photon to a microscope objective can be brought close to one with a proper engineering of the wire ends. The source thus features an integrated bottom mirror and a smooth tapering of the wire upper end. High performances are maintained over a broad wavelength range, a key asset of this 1D photonic structure. This thesis presents the physics which governs these structures, their realization, and their characterization. Under pulsed optical pumping, we demonstrate a single-photon source with a record efficiency of 0.72, combined with highly pure single-photon emission. We also discuss the possibility to obtain polarization control, using wire with an elliptical section.

Page generated in 0.073 seconds