• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 13
  • 12
  • 7
  • 6
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 174
  • 174
  • 65
  • 52
  • 35
  • 26
  • 24
  • 24
  • 23
  • 21
  • 20
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

A Prototype For An Interactive And Dynamic Image-Based Relief Rendering System / En prototyp för ett interaktivt och dynamisktbildbaserat relief renderingssystem

Bakos, Niklas January 2002 (has links)
In the research of developing arbitrary and unique virtual views from a real- world scene, a prototype of an interactive relief texture mapping system capable of processing video using dynamic image-based rendering, is developed in this master thesis. The process of deriving depth from recorded video using binocular stereopsis is presented, together with how the depth information is adjusted to be able to manipulate the orientation of the original scene. When the scene depth is known, the recorded organic and dynamic objects can be seen from viewpoints not available in the original video.
102

Real-time image based lighting with streaming HDR-light probe sequences

Hajisharif, Saghi January 2012 (has links)
This work presents a framework for shading of virtual objects using high dynamic range (HDR) light probe sequences in real-time. The method is based on using HDR environment map of the scene which is captured in an on-line process by HDR video camera as light probes. In each frame of the HDR video, an optimized CUDA kernel is used to project incident lighting into spherical harmonics in realtime. Transfer coefficients are calculated in an offline process. Using precomputed radiance transfer the radiance calculation reduces to a low order dot product between lighting and transfer coefficients. We exploit temporal coherence between frames to further smooth lighting variation over time. Our results show that the framework can achieve the effects of consistent illumination in real-time with flexibility to respond to dynamic changes in the real environment. We are using low-order spherical harmonics for representing both lighting and transfer functionsto avoid aliasing.
103

Photographic metaphors: A multiple case study of second language teachers' experiences using the acquisition model.

DeLaCruz-Raub, Jeanne Marie 05 1900 (has links)
The purpose of this study was to examine and document second language teachers' perceptions of their implementation of a meaning-making approach, known as the Acquisition Model, to second language instruction. Of particular focus were the concerns and strategies the second language teachers experienced when changing their pedagogical practice from mechanical to meaning making. The main research question, which guided this study, was: "What is the 'lived experience' of L2 teachers as they implement an innovative pedagogy to teach a second language?" The researcher addressed this research question through Max van Manen's (1990) six step phenomenological method, "Researching Lived Experience" and image-based research techniques (i.e., photo elicitation and reflexive photography). In addition, the researcher also created and applied an innovative data collection technique, which she called Collaborative Imagery. Findings from this study generated various implications in the areas of second language education, curricular change, teacher reflection, image-based research, and educational research.
104

Image-based modelling of complex heterogeneous microstructures: Application to deformation-induced permeability alterations in rocks

Ehab Moustafa Kamel, Karim 17 March 2021 (has links) (PDF)
The permeability of rocks has a critical influence on their fluid transport response in critical geo-environmental applications, such as pollutant transport or underground storage of hazardous nuclear waste. In such processes, the materials microstructure may be altered as a result of various stimuli, thereby impacting the fluid transfer properties. Stress or strain state modifications are one of the main causes for such evolutions. To numerically address this concern, an integrated and automated numerical tool was developed and illustrated on subsets of microCT scans of a Vosges sandstone (i) to explore the links between the pore space properties and the corresponding macroscopic transfer properties, with (ii) an incorporation of the microstructural alterations associated with stress state variations by using a realistic image-based representation of the microstructural morphology. The ductile mechanical deformation behavior under high confining pressures at the scale of the microstructure, inducing pore closures by local plastifications, was modelled using finite elements simulations with a non-linear elastoplastic law, allowing to take into account the redistribution of local stresses. These simulations require robust discretization tools to capture the complex geometry of the porous network and the corresponding solid boundaries of the heterogeneous microstructural geometries. To achieve this, an integrated approach for the conformal discretization of complex implicit geometries based on signed distance fields was developed, producing high quality meshes from both imaging techniques and computational RVE generation methodologies. This conforming discretization approach was compared with an incompatible mode-based framework using a non conforming approach. This comparison highlighted the complementarity of both methods, the former capturing the effect of more detailed geometrical features, while the latter is more flexible as it allows using the same (non conforming) mesh for potentially variable geometries.The evolution of permeability was evaluated at different confining pressure levels using the Lattice-Bolzmann method. This uncoupled solid-fluid interaction made it possible to study the combined influence on the permeability, porosity and the pores size distribution of the pore space morphology and the solid skeleton constitutive law parameters during loading and unloading conditions. The results highlight the need to consider elastoplastic laws and heterogeneities in the rock model to simulate the ductile behavior of rocks at high confining pressures leading to significant permeability alterations under loading, and irreversible alterations under loading/unloading cycles induced by progressive pore closures.The proposed methodology is designed to be flexible thanks to the interfacing with 'classical' discretization approaches and can be easily readapted to other contexts given the block approach. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
105

Land Cover and Use Change in Utah: A Comparison of Field- vs. Aerial Image-Based Observations

Bakken, Jennifer Lynn 01 August 2018 (has links)
The Image-based Change Estimation program (ICE) was developed by the US Forest Service Forest Inventory & Analysis (FIA) program and the Geospatial Technology Applications Center in response to the 2014 Farm Bill calling for more timely and accurate estimates of land cover and use change. ICE monitors change throughout the US on a state by state basis by assessing each FIA plot using high resolution imagery from two dates in time. In the western US, FIA measures 10% of the plots each year to report on status, trends, and sustainability of our Nation’s forests. However, this 10 year cycle misses disturbances because a temporal gap occurs from disturbance event to measurement. This study compares field- and image-based observations of land cover and use change to improve sampling procedures in Utah. Image-based data collected from 2011 and 2014 imagery and field-based plots measured between 2011 and 2016 are compared using three methods to compile the ICE data, termed hierarchical, majority, and point center, to determine a standardized system and better understand their relationships. Additionally, ICE change agents were compared with causes of tree mortality observed on FIA forest plots to assess how well ICE evaluates causes of change and the differences of change vs. mortality agents were explored by conducting a second review of the imagery to find trends in data discrepancies. This knowledge can help image interpreters better recognize and identify change.
106

Extraction and Integration of Physical Illumination in Dynamic Augmented Reality Environments

Alhakamy, A'aeshah A. 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Although current augmented, virtual, and mixed reality (AR/VR/MR) systems are facing advanced and immersive experience in the entertainment industry with countless media forms. Theses systems suffer a lack of correct direct and indirect illumination modeling where the virtual objects render with the same lighting condition as the real environment. Some systems are using baked GI, pre-recorded textures, and light probes that are mostly accomplished offline to compensate for precomputed real-time global illumination (GI). Thus, illumination information can be extracted from the physical scene for interactively rendering the virtual objects into the real world which produces a more realistic final scene in real-time. This work approaches the problem of visual coherence in AR by proposing a system that detects the real-world lighting conditions in dynamic scenes, then uses the extracted illumination information to render the objects added to the scene. The system covers several major components to achieve a more realistic augmented reality outcome. First, the detection of the incident light (direct illumination) from the physical scene with the use of computer vision techniques based on the topological structural analysis of 2D images using a live-feed 360-degree camera instrumented on an AR device that captures the entire radiance map. Also, the physics-based light polarization eliminates or reduces false-positive lights such as white surfaces, reflections, or glare which negatively affect the light detection process. Second, the simulation of the reflected light (indirect illumination) that bounce between the real-world surfaces to be rendered into the virtual objects and reflect their existence in the virtual world. Third, defining the shading characteristic/properties of the virtual object to depict the correct lighting assets with a suitable shadow casting. Fourth, the geometric properties of real-scene including plane detection, 3D surface reconstruction, and simple meshing are incorporated with the virtual scene for more realistic depth interactions between the real and virtual objects. These components are developed methods which assumed to be working simultaneously in real-time for photo-realistic AR. The system is tested with several lighting conditions to evaluate the accuracy of the results based on the error incurred between the real/virtual objects casting shadow and interactions. For system efficiency, the rendering time is compared with previous works and research. Further evaluation of human perception is conducted through a user study. The overall performance of the system is investigated to reduce the cost to a minimum.
107

Image Vectorization

Price, Brian L. 31 May 2006 (has links) (PDF)
We present a new technique for creating an editable vector graphic from an object in a raster image. Object selection is performed interactively in subsecond time by calling graph cut with each mouse movement. A renderable mesh is then computed automatically for the selected object and each of its (sub)objects by (1) generating a coarse object mesh; (2) performing recursive graph cut segmentation and hierarchical ordering of subobjects; (3) applying error-driven mesh refinement to each (sub)object. The result is a fully layered object hierarchy that facilitates object-level editing without leaving holes. Object-based vectorization compares favorably with current approaches in the representation and rendering quality. Object-based vectorization and complex editing tasks are performed in a few 10s of seconds.
108

Adapting Single-View View Synthesis with Multiplane Images for 3D Video Chat

Uppuluri, Anurag Venkata 01 December 2021 (has links) (PDF)
Activities like one-on-one video chatting and video conferencing with multiple participants are more prevalent than ever today as we continue to tackle the pandemic. Bringing a 3D feel to video chat has always been a hot topic in Vision and Graphics communities. In this thesis, we have employed novel view synthesis in attempting to turn one-on-one video chatting into 3D. We have tuned the learning pipeline of Tucker and Snavely's single-view view synthesis paper — by retraining it on MannequinChallenge dataset — to better predict a layered representation of the scene viewed by either video chat participant at any given time. This intermediate representation of the local light field — called a Multiplane Image (MPI) — may then be used to rerender the scene at an arbitrary viewpoint which, in our case, would match with the head pose of the watcher in the opposite, concurrent video frame. We discuss that our pipeline, when implemented in real-time, would allow both video chat participants to unravel occluded scene content and "peer into" each other's dynamic video scenes to a certain extent. It would enable full parallax up to the baselines of small head rotations and/or translations. It would be similar to a VR headset's ability to determine the position and orientation of the wearer's head in 3D space and render any scene in alignment with this estimated head pose. We have attempted to improve the performance of the retrained model by extending MannequinChallenge with the much larger RealEstate10K dataset. We present a quantitative and qualitative comparison of the model variants and describe our impactful dataset curation process, among other aspects.
109

Precisiones sobre el levantamiento 3D integrado con herramientas avanzadas, aplicado al conocimiento y la conservación del patrimonio arquitectónico

Martínez-Espejo Zaragoza, Isabel 16 May 2014 (has links)
The aim of the thesis is to analyse new technologies for integrated architectural surveys, studying the advantages and limitations of each in different architectural contexts, providing a global vision and unifying terminology and methodology in the field of architecture and engineering. The new technologies analyzed include laser scanning (both time-of-flight and triangulation), image-based 3-D modelling and drone-based photogrammetry, along with their integration with classical surveying techniques. With this goal, some case studies were examined, using different survey techniques with several advanced applications, in the field of architectural heritage. The case studies enabled us to analyze and study these techniques, however having quite clear that Image- and Range-based Modelling techniques, rather than compared, must be analysed for their integration, which is essential for the rendering of models with high levels of morphological and chromatic detail. On the other hand, thanks to the experience of the two different faculties (Architecture in Valencia, Spain and Civil Engineering in Pisa, Italy), besides the issues of interpretation between the two languages, divergence was found between the terminology used by the different specialists involved in the process, be they engineers (although dealing with different branches), architects and archaeologists. It is obvious that each of these profiles has a different view of architectural heritage, general construction and surveys. The current trend to form multidisciplinary teams working on architectural heritage, leads us to conclude that an unified technical terminology in this field could facilitate understanding and integration between the different figures, thus creating a common code. / Martínez-Espejo Zaragoza, I. (2014). Precisiones sobre el levantamiento 3D integrado con herramientas avanzadas, aplicado al conocimiento y la conservación del patrimonio arquitectónico [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37512
110

Development of Energy-Based Endpoints for diagnosis of Pulmonary Valve Insufficiency

Das, Ashish January 2013 (has links)
No description available.

Page generated in 0.0236 seconds