• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 13
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fusion de données pour la surveillance du champ de bataille

Pannetier, Benjamin 17 October 2006 (has links) (PDF)
Dans le domaine de la surveiIlance du champ de bataille, la poursuite de cibles terrestres est un point crucial pour évaluer le comportement des forces présentent sur le théâtre des opérations. Cette poursuite peut être menée à partir des capteurs aéroportés GMTI (Ground Moving Target Indicator) qui détectent tous les objets en mouvement. Toutefois, les techniques classiques de trajectographie ne permettent pas d'établir une situation fiable de la scène. Cependant, avec le développement et la fiabilité des systèmes d'information géographique, il devient possible de fusionner les données GMTI avec toute l'information contextuelJe pour améliorer le pistage. Le travail présenté dans cette thèse s'intéresse à l'intégration de l'information cartographique dans les techniques usueIJes de trajectographie. Le réseau routier est alors considéré comme une contrainte et un algorithme IMM à structure variable, pour s'adapter à la topologie du réseau, est présenté et testé sur données simulées. L'algorithme prend en entrée la position des plots MTI mais aussi la vitesse radiale des plots. Lorsque cette dernière est éloignée statistiquement de la vitesse radiale prédite, le système risque de ne pas associer le plot à la piste et de perdre cette dernière. Dans ce cas, un facteur d'oubli momentané est utilisé afin d'éviter la perte de la piste. De plus, la problématique des entrées et sorties de route pour le pi stage d'objets d'intérêts est traitée en activant ou désactivant les modèles dynamiques sous contraintes. Par ailleurs, nous proposons une approche pour considérer l'information négative (i.e. absence de détection) suivant la nature du terrain et améliorer la continuité du pi stage
22

Improved State Estimation For Jump Markov Linear Systems

Orguner, Umut 01 December 2006 (has links) (PDF)
This thesis presents a comprehensive example framework on how current multiple model state estimation algorithms for jump Markov linear systems can be improved. The possible improvements are categorized as: -Design of multiple model state estimation algorithms using new criteria. -Improvements obtained using existing multiple model state estimation algorithms. In the first category, risk-sensitive estimation is proposed for jump Markov linear systems. Two types of cost functions namely, the instantaneous and cumulative cost functions related with risk-sensitive estimation are examined and for each one, the corresponding multiple model estate estimation algorithm is derived. For the cumulative cost function, the derivation involves the reference probability method where one defines and uses a new probability measure under which the involved processes has independence properties. The performance of the proposed risk-sensitive filters are illustrated and compared with conventional algorithms using simulations. The thesis addresses the second category of improvements by proposing -Two new online transition probability estimation schemes for jump Markov linear systems. -A mixed multiple model state estimation scheme which combines desirable properties of two different multiple model state estimation methods. The two online transition probability estimators proposed use the recursive Kullback-Leibler (RKL) procedure and the maximum likelihood (ML) criteria to derive the corresponding identification schemes. When used in state estimation, these methods result in an average error decrease in the root mean square (RMS) state estimation errors, which is proved using simulation studies. The mixed multiple model estimation procedure which utilizes the analysis of the single Gaussian approximation of Gaussian mixtures in Bayesian filtering, combines IMM (Interacting Multiple Model) filter and GPB2 (2nd Order Generalized Pseudo Bayesian) filter efficiently. The resulting algorithm reaches the performance of GPB2 with less Kalman filters.
23

A Comparative Study Of Tracking Algorithms In Underwater Environment Using Sonar Simulation

Ege, Emre 01 October 2007 (has links) (PDF)
Target tracking is one the most fundamental elements of a radar system. The aim of target tracking is the reliable estimation of a target&#039 / s true state based on a time history of noisy sensor observations. In real life, the sensor data may include substantial noise. This noise can render the raw sensor data unsuitable to be used directly. Instead, we must filter the noise, preferably in an optimal manner. For land, air and surface marine vehicles, very successful filtering methods are developed. However, because of the significant differences in the underwater propagation environment and the associated differences in the corresponding sensors, the successful use of similar principles and techniques in an underwater scenario is still an active topic of research. A comparative study of the effects of the underwater environment on a number of tracking algorithms is the focus of the present thesis. The tracking algorithms inspected are: the Kalman Filter, the Extended Kalman Filter and the Particle Filter. We also investigate in particular the IMM extension to KF and EKF filters. These algorithms are tested under several underwater environment scenarios.
24

Performance Optimization Of Monopulse Tracking Radar

Sahin, Mehmet Alper 01 August 2004 (has links) (PDF)
An analysis and simulation tool is developed for optimizing system parameters of the monopulse target tracking radar and observing effects of the system parameters on the performance of the system over different scenarios. A monopulse tracking radar is modeled for measuring the performance of the radar with given parameters, during the thesis studies. The radar model simulates the operation of a Class IA type monopulse automatic tracking radar, which uses a planar phased array. The interacting multiple model (IMM) estimator with the Probabilistic Data Association (PDA) technique is used as the tracking filter. In addition to modeling of the tracking radar model, an optimization tool is developed to optimize system parameters of this tracking radar model. The optimization tool implements a Genetic Algorithm (GA) belonging to a GA Toolbox distributed by Department of Automatic Control and System Engineering at University of Sheffield. The thesis presents optimization results over some given optimization scenarios and concludes on effect of tracking filter parameters, beamwidth and dwell interval for the confirmed track.
25

Recursive-RANSAC: A Novel Algorithm for Tracking Multiple Targets in Clutter

Niedfeldt, Peter C. 02 July 2014 (has links) (PDF)
Multiple target tracking (MTT) is the process of identifying the number of targets present in a surveillance region and the state estimates, or track, of each target. MTT remains a challenging problem due to the NP-hard data association step, where unlabeled measurements are identified as either a measurement of an existing target, a new target, or a spurious measurement called clutter. Existing techniques suffer from at least one of the following drawbacks: divergence in clutter, underlying assumptions on the number of targets, high computational complexity, time-consuming implementation, poor performance at low detection rates, and/or poor track continuity. Our goal is to develop an efficient MTT algorithm that is simple yet effective and that maintains track continuity enabling persistent tracking of an unknown number of targets. A related field to tracking is regression analysis, where the parameters of static signals are estimated from a batch or a sequence of data. The random sample consensus (RANSAC) algorithm was developed to mitigate the effects of spurious measurements, and has since found wide application within the computer vision community due to its robustness and efficiency. The main concept of RANSAC is to form numerous simple hypotheses from a batch of data and identify the hypothesis with the most supporting measurements. Unfortunately, RANSAC is not designed to track multiple targets using sequential measurements.To this end, we have developed the recursive-RANSAC (R-RANSAC) algorithm, which tracks multiple signals in clutter without requiring prior knowledge of the number of existing signals. The basic premise of the R-RANSAC algorithm is to store a set of RANSAC hypotheses between time steps. New measurements are used to either update existing hypotheses or generate new hypotheses using RANSAC. Storing multiple hypotheses enables R-RANSAC to track multiple targets. Good tracks are identified when a sufficient number of measurements support a hypothesis track. The complexity of R-RANSAC is shown to be squared in the number of measurements and stored tracks, and under moderate assumptions R-RANSAC converges in mean to the true states. We apply R-RANSAC to a variety of simulation, camera, and radar tracking examples.
26

Interactive multimedia problem-based learning for enhancing pre-service teachers' self-efficacy beliefs about teaching with computers: design, development and evaluation

Albion, Peter January 2000 (has links)
[Abstract]: Research has suggested that, despite support through policy and resource provision,information and communications technologies (ICTs) have made little impact on the practiceof education and that limited teacher preparation for the use of ICTs represents a partialexplanation. The purpose of this study was to investigate what form of professionaleducation might be effective in preparing pre-service teachers to integrate ICTs into theirteaching. Self-efficacy beliefs about teaching with computers were identified as a potentiallysignificant source of influence on teachers' use of ICTs for teaching. It was proposed thatinteractive multimedia using a problem-based learning design (IMM-PBL) should be aneffective tool for increasing self-efficacy. Principles for the design of IMM-PBL were derivedfrom the relevant literature.An IMM-PBL package was designed and developed for delivery in a web browser formatusing content relevant to the integration of ICTs into teaching. Interviews with and sampleresponses prepared by computer-using teachers provided the basis for ensuring therelevance of content.The completed materials were evaluated in use with a group of 24 final year pre-serviceteachers in a Queensland university. Participants in the trials reported that the materialswere engaging and assisted their learning about integrating computers in their teaching. Astatistically significant increase in self-efficacy for teaching with computers was found forusers who had initially low self-efficacy for teaching with computers.The principles proposed for IMM-PBL design were found to offer a practical basis for thedevelopment of effective learning materials. With further development, IMM-PBL promisesto be a powerful and flexible approach to supporting learning for teachers and otherprofessionals.
27

Un sistema de navegación de alta integridad para vehículos en entornos desfavorables

Toledo Moreo, Rafael 03 March 2006 (has links)
Algunas aplicaciones de carretera actuales, tales como los servicios de información al viajero, llamadas de emergencia automáticas, control de flotas o telepeaje eletrónico, requieren una solución de calidad al problema del posicionamiento de un vehículo terrestre, que funcione en cualquier entorno y a un coste razonable. Esta tesis presenta una solución a este problema, fusionando para ello la información procedente principalmente de sensores de navegación por satélite y sensores inerciales. Para ello emplea un nuevo filtro de fusion multisensorial IMM-EKF. El comportamiento del sistema ha sido analizado en entornos reales y controlados, y comparado con otras soluciones propuestas. Finalmente, su aplicabilidad al problema planteado ha sido verificada. / Road applications such as traveller information, automatic emergency calls, freight management or electronic fee, collection require a onboard equipment (OBE) capable to offer a high available accurate position, even in unfriendly environments with low satellite visibility at low cost. Specifically in life critical applications, users demand from the OBEs accurate continuous positioning and information of the reliability of this position. This thesis presents a solution based on the fusion of Global Navigation Satellite Systems (GNSS) and inertial sensors (GNSS/INS), running an Extended Kalman Filter combined with an Interactive Multi-Model method (IMM-EKF). The solution developed in this work supplies continuous positioning in marketable conditions, and a meaningful trust level of the given solution. A set of tests performed in controlled and real scenarios proves the suitability of the proposed IMM-EKF implementation, as compared with low cost GNSS based solutions, dead reckoning systems and single model extended Kalman filter (SM-EKF) solutions.
28

Tracker-aware Detection: A Theoretical And An Experimental Study

Aslan, Murat Samil 01 February 2009 (has links) (PDF)
A promising line of research attempts to bridge the gap between detector and tracker by means of considering jointly optimal parameter settings for both of these subsystems. Along this fruitful path, this thesis study focuses on the problem of detection threshold optimization in a tracker-aware manner so that a feedback from the tracker to the detector is established to maximize the overall system performance. Special emphasis is given to the optimization schemes based on two non-simulation performance prediction (NSPP) methodologies for the probabilistic data association filter (PDAF), namely, the modified Riccati equation (MRE) and the hybrid conditional averaging (HYCA) algorithm. The possible improvements are presented in two domains: Non-maneuvering and maneuvering target tracking. In the first domain, a number of algorithmic and experimental evaluation gaps are identified and newly proposed methods are compared with the existing ones in a unified theoretical and experimental framework. Furthermore, for the MRE based dynamic threshold optimization problem, a closed-form solution is proposed. This solution brings a theoretical lower bound on the operating signal-to-noise ratio (SNR) concerning when the tracking system should be switched to the track before detect (TBD) mode. As the improvements of the second domain, some of the ideas used in the first domain are extended to the maneuvering target tracking case. The primary contribution is made by extending the dynamic optimization schemes applicable to the PDAF to the interacting multiple model probabilistic data association filter (IMM-PDAF). Resulting in an online feedback from the filter to the detector, this extension makes the tracking system robust against track losses under low SNR values.
29

Modeling and State of Charge Estimation of Electric Vehicle Batteries

Ahmed, Ryan January 2014 (has links)
Electric vehicles have received substantial attention in the past few years since they provide a more sustainable, efficient, and greener transportation alternative in comparison to conventional fossil-fuel powered vehicles. Lithium-Ion batteries represent the most important component in the electric vehicle powertrain and thus require accurate monitoring and control. Many challenges are still facing the mass market production of electric vehicles; these challenges include battery cost, range anxiety, safety, and reliability. These challenges can be significantly mitigated by incorporating an efficient battery management system. The battery management system is responsible for estimating, in real-time, the battery state of charge, state of health, and remaining useful life in addition to communicating with other vehicle components and subsystems. In order for the battery management system to effectively perform these tasks, a high-fidelity battery model along with an accurate, robust estimation strategy must work collaboratively at various power demands, temperatures, and states of life. Lithium ion batteries are considered in this research. For these batteries, electrochemical models represent an attractive approach since they are capable of modeling lithium diffusion processes and track changes in lithium concentrations and potentials inside the electrodes and the electrolyte. Therefore, electrochemical models provide a connection to the physical reactions that occur in the battery thus favoured in state of charge and state of health estimation in comparison to other modeling techniques. The research presented in this thesis focuses on advancing the development and implementation of battery models, state of charge, and state of health estimation strategies. Most electrochemical battery models have been verified using simulation data and have rarely been experimentally applied. This is because most electrochemical battery model parameters are considered proprietary information to their manufacturers. In addition, most battery models have not accounted for battery aging and degradation over the lifetime of the vehicle using real-world driving cycles. Therefore, the first major contribution of this research is the formulation of a new battery state of charge parameterization strategy. Using this strategy, a full-set of parameters for a reduced-order electrochemical model can be estimated using real-world driving cycles while accurately calculating the state of charge. The developed electrochemical model-based state of charge parameterization strategy depends on a number of spherical shells (model states) in conjunction with the final value theorem. The final value theorem is applied in order to calculate the initial values of lithium concentrations at various shells of the electrode. Then, this value is used in setting up constraints for the optimizer in order to achieve accurate state of charge estimation. Developed battery models at various battery states of life can be utilized in a real-time battery management system. Based on the developed models, estimation of the battery critical surface charge using a relatively new estimation strategy known as the Smooth Variable Structure Filter has been effectively applied. The technique has been extended to estimate the state of charge for aged batteries in addition to healthy ones. In addition, the thesis introduces a new battery aging model based on electrochemistry. The model is capable of capturing battery degradation by varying the effective electrode volume, open circuit potential-state of charge relationship, diffusion coefficients, and solid-electrolyte interface resistance. Extensive experiments for a range of aging scenarios have been carried out over a period of 12 months to emulate the entire life of the battery. The applications of the proposed parameterization method combined with experimental aging results significantly improve the reduced-order electrochemical model to adapt to various battery states of life. Furthermore, online and offline battery model parameters identification and state of charge estimation at various states of life has been implemented. A technique for tracking changes in the battery OCV-R-RC model parameters as battery ages in addition to estimation of the battery SOC using the relatively new Smooth Variable Structure Filter is presented. The strategy has been validated at both healthy and aged battery states of life using driving scenarios of an average North-American driver. Furthermore, online estimation of the battery model parameters using square-root recursive least square (SR-RLS) with forgetting factor methodology is conducted. Based on the estimated model parameters, estimation of the battery state of charge using regressed-voltage-based estimation strategy at various states of life is applied. The developed models provide a mechanism for combining the standalone estimation strategy that provide terminal voltage, state of charge, and state of health estimates based on one model to incorporate these different aspects at various battery states of life. Accordingly, a new model-based estimation strategy known as the interacting multiple model (IMM) method has been applied by utilizing multiple models at various states of life. The method is able to improve the state of charge estimation accuracy and stability, when compared with the most commonly used strategy. This research results in a number of novel contributions, and significantly advances the development of robust strategies that can be effectively applied in real-time on-board of a battery management system. / Thesis / Doctor of Philosophy (PhD)
30

Onboard Aircraft Traffic Tracking Algorithm to Support Conflict Detection and Resolution using Multi-sensor Data Integration and Integrity Monitoring

Bezawada, Rajesh January 2012 (has links)
No description available.

Page generated in 0.0167 seconds