• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 515
  • 258
  • 148
  • 57
  • 48
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 1279
  • 553
  • 266
  • 180
  • 162
  • 159
  • 151
  • 150
  • 146
  • 136
  • 134
  • 130
  • 130
  • 112
  • 111
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Muncie's urban landscape : an exploration in printmaking

Flaherty, Patrick M. January 2003 (has links)
This project involved making a series of woodcut and intaglio prints based on Muncie's urban landscape. The idea of a generic specific - a place unique to one area yet readily recognized across the industrialized world as familiar - is introduced and explored. In addition the idea of impermanence and flux is discussed in terms of how the time that I am living in now has its own unique features that will be obsolete, ruins, or altogether forgotten in the next fifty to seventy-five years. The work also explores the aesthetic merits of buildings like gas stations and vehicles - objects that are generally unconsidered in that way. In completing this series a historical documentation of this period of time was created, valuable to both those living now and those to come. / Department of Art
112

Development of advanced tools and methods for the assessment and management of risk due to atypical major accident scenarios

Paltrinieri, Nicola <1983> 01 June 2012 (has links)
Proper hazard identification has become progressively more difficult to achieve, as witnessed by several major accidents that took place in Europe, such as the Ammonium Nitrate explosion at Toulouse (2001) and the vapour cloud explosion at Buncefield (2005), whose accident scenarios were not considered by their site safety case. Furthermore, the rapid renewal in the industrial technology has brought about the need to upgrade hazard identification methodologies. Accident scenarios of emerging technologies, which are not still properly identified, may remain unidentified until they take place for the first time. The consideration of atypical scenarios deviating from normal expectations of unwanted events or worst case reference scenarios is thus extremely challenging. A specific method named Dynamic Procedure for Atypical Scenarios Identification (DyPASI) was developed as a complementary tool to bow-tie identification techniques. The main aim of the methodology is to provide an easier but comprehensive hazard identification of the industrial process analysed, by systematizing information from early signals of risk related to past events, near misses and inherent studies. DyPASI was validated on the two examples of new and emerging technologies: Liquefied Natural Gas regasification and Carbon Capture and Storage. The study broadened the knowledge on the related emerging risks and, at the same time, demonstrated that DyPASI is a valuable tool to obtain a complete and updated overview of potential hazards. Moreover, in order to tackle underlying accident causes of atypical events, three methods for the development of early warning indicators were assessed: the Resilience-based Early Warning Indicator (REWI) method, the Dual Assurance method and the Emerging Risk Key Performance Indicator method. REWI was found to be the most complementary and effective of the three, demonstrating that its synergy with DyPASI would be an adequate strategy to improve hazard identification methodologies towards the capture of atypical accident scenarios.
113

Indianapolis amusement parks, 1903-1911 landscapes on the edge /

Zeigler, Connie J. January 2007 (has links)
Thesis (M.A.)--Indiana University, 2007. / Title from screen (viewed on Feb. 18, 2008). Department of History, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Annie Gilbert Coleman, Robert G. Barrows, Owen J. Dwyer III. Includes vitae. Includes bibliographical references (leaves 122-127).
114

A history of Greensburg High School, Greensburg, Indiana /

Lehman, Lucy L. January 1949 (has links)
Thesis (M.S.)--Buter University, 1949. / Includes bibliographical references (leaf [181]).
115

Deformation mechanisms in bulk nanostructured aluminum obtained after cryomilling and consolidation by spark plasma sintering

Lonardelli, Ivan January 2010 (has links)
Bimodal bulk nanocristalline (nc)/ultrafine (UF) aluminum was produced after cryomilling and spark plasma sintering consolidation process. The samples obtainedwere plastically deformed in uniaxial compression. We show that there is a significant fraction of plastic strain (11%) that can be recovered after unloading. High-energy synchrotron X-ray diffraction experiments revealed that, there is a correlation between plastic strain recovery and microstructural evolution detected during in-situ loading-unloading experiments. Using a deconvolution approach, the nanostructured volume fraction (grain size below 100 nm) and the UF counterpart (grain size above 100-150 nm)were separated in terms of lattice strain, microstrain, crystallite size and crystallographic texture. During loading-unloading cycles we observe a lattice strain splitting between nc and UF volume fractions, a complete recovery of the peak broadening and a recovery of texture. These intriguing phenomena were explained to be strictly correlated with the lattice strain splitting behavior which act as the driving force for dislocation recombination.
116

Production of strengthened copper materials by Mechanical Milling-Mechanical Alloying and Spark Plasma Sintering

Cipolloni, Giulia January 2016 (has links)
Copper is widely used in many applications demanding high thermal and electrical conductivity, unfortunately its low hardness and wear resistance limit its performance. Work hardening has been proposed as a successful strengthening mechanism for the production of harder copper material, keeping the intrinsic conductivities. In this PhD thesis initially mechanical milling (MM) has been considered as suited strengthening technique due to the severe strain hardening and microstructural refinement induced by severe plastic deformation during the process. Then an enhanced hardening has been obtained by dispersion of a second harder phase in the copper matrix by mechanical alloying (MA), leading to the production of metal matrix composites (MMC). In this PhD thesis strain hardened and dispersion hardened copper materials have been sintered by Spark Plasma Sintering (SPS). Firstly the MM behaviour of Cu as function of milling time has been studied, it consists in three stages: flaking, welding and fracturing process. Since stearic acid has been added as process control agent (PCA), its decomposition has been analysed to limit the residual porosity in sintered samples. Several focused attempts have been made and the best results have been obtained by using a fine particle size, decreasing the heating rate and applying the SPS pressure once the decomposition of PCA was completed. However the presence of copper oxide and microstructure defects induced by the severe strain hardening hinder the densification. The residual porosity is responsible of a decrease of hardness in sintered sample and consequently to a limited wear resistance, to a decrease of thermal conductivity and to a loss of ductility. For the production of MMC a ceramic reinforcement (0.5wt% of TiB2) has been selected. Increasing milling time the dispersion of the hard phase among the matrix becomes more homogeneous and refinement of TiB2 is highlighted. The evolution of particle size and morphology during MA is similar to MM; also the densification mechanism during SPS are the same consisting in powder rearrangement, local and bulk deformation. The final density generally decreases by increasing milling time, by the way an increasing hardness confirms that strain hardening and dispersion hardening abundantly compensate the negative effect of porosity. Has been proved that the hard particles successfully enhanced sliding and abrasion wear meanwhile the copper matrix guarantees high thermal conductivity, satisfying the requirements. Therefore considering the characteristics of the initial copper powder, promising results have been obtained for MMCs showing an increased hardness combined with a high wear resistance and a thermal conductivity comparable to atomized copper and much higher than the commercial Cu-Be alloy. On the other side mechanical milled samples exhibited some limits, but they allowed a deep understanding of the MM process of copper.
117

Production of steel matrix composites by mechanical milling and spark plasma sintering

Fedrizzi, Anna January 2013 (has links)
Hot work tool steels (HWTSs) are ferrous alloys for tooling application, particularly developed to meet high toughness and good hot hardness. Increasing hardness generally leads to a decrease in toughness, therefore metal matrix composite (MMC) coatings and functionally graded materials have been proposed as a good solution for improving wear resistance. In this PhD thesis powder metallurgy has been applied for the production of particle reinforced HWTSs. Mechanical milling (MM) and mechanical alloying (MA) have been considered as suited techniques for the production of powders showing higher sinterability and finer microstructure. Spark plasma sintering (SPS) has been used for the consolidation. As reinforcement a harder high speed steel (HSS) and different ceramic powders (TiB2, TiC and TiN) have been selected. The production of HWTS/HSS blends has highlighted the negative interaction on densification of the two components due to their different sintering kinetics. This interference can be minimised by selecting powders with smaller particles size. With this respect MM was proved to be a very useful method, which enhances sintering. Fully dense blends with good dispersion of the reinforcing particles can be sintered using small sized powders and setting the particle size ratio (PSR) smaller than 1. For the production of MMCs the formation of aggregates has been overcome by MA which promotes a uniform dispersion of hard particles into the parent steel. Among the reinforcement considered in this work, TiB2 is not suitable because it reacts with steel depleting carbon and producing TiC and brittle Fe2B. HWTS composites with 20%vol of TiC can be fully densified by SPS at 1100 °C for 30 minutes and 60 MPa uniaxial pressure. On the other hand TiN-reinforced MMC shows high resistance to densification and fully dense materials could not be produced.
118

Microstructure and mechanical properties of biomedical alloys produced by Rapid Manufacturing techniques

Facchini, Luca January 2010 (has links)
Rapid Manufacturing (RM) technologies as Electron Beam Melting (EBM) and Selective Laser Melting (SLM) are able to produce fully dense parts from pre-alloyed powders in a layer-wise way. Moreover, they are able to create tailored surfaces with interconnected porosity. Applied to biomedical prostheses, such porosity can favour cell adhesion and osteointegration. The most important intrinsic characteristic of RM techniques is the large undercooling the parts undergo during the process. This undercooling results in peculiar, very fine, metastable microstructures, associated to peculiar mechanical behaviour. Metastable microstructures can change on post-melting operations, making the materials match the standard requirements and gain interesting properties.
119

Production of a nanostructured copper by Spark Plasma Sintering

Diouf, Saliou January 2013 (has links)
The aim of the present PhD work is the study of the production of a nanostructured copper by Spark Plasma Sintering. The nanostructured powder was produced by cryomilling an atomized powder, using a ball-to-powder ratio of 30:1 for 8h; it has a mean grain size of 19±2 nm and shows quite a high thermal stability, as shown by a DSC investigation. The influence of temperature, particle size, pressure on the densification and sintering mechanisms as well as that of heating rate and holding time on the structural evolution has been investigated. Particle rearrangement, local deformation, bulk deformation and sintering are the SPS mechanisms occurring successively during the sintering process of the atomized copper. These mechanisms are enhanced by the peculiar heating mechanism in SPS, and the surface overheating above the melting temperature in the contact regions has been demonstrated. In the cryomilled powder, sintering occurs at much lower temperature than in the atomized powder, due to effect of the high density of structural defects on the mass transport phenomena responsible for neck growth. The increase in heating rate tends to promote a bimodal grain size distribution (both nanomentric and ultrafine grains) while an increase in holding time increases grain size slightly. A promising combination of strength and ductility was measured on tensile specimens produced under selected conditions, and a dimpled fracture morphology was observed.
120

Numerical simulation of fumes evacuation in steelmaking plants

Labiscsak, Laszlo January 2012 (has links)
Evacuation systems in steelmaking plants contribute to the security of the operators around the furnace and help to gain the emission levels stated in the environmental regulations, furthermore play a major role in the mass and heat balance of the factory. The aim of the dissertation is to study both primary and secondary emission capture systems of an electric arc furnace steelmaking plant by means of 3D computational thermal fluid dynamics calculations. The overall performance of the post-combustion chamber, and consequently the primary line, is controlled by the size of the gap downstream the fourth hole of an electric are furnace. The impact of the opening coefficient (ratio between the gap area and the total area) on the post-combustion chamber performance has been investigated by means of a comprehensive 3D steady CFD simulation comprising radiative heat exchanges and detailed chemical reactions. It was found that there is not a unique value of the opening coefficient capable of optimizing all the relevant quantities of the evacuation process. A value of the opening coefficient in the range 0.40-0.52 appears advisable. The impact of the (mostly unknown) boundary conditions was also assessed and inefficiencies of the assumed post-combustion geometry have been highlighted. The secondary line's capturing efficiency during the charging phase was simulated with both transient and steady-state solvers with different turbulent models, namely the standard k-e and the Large Eddy Simulation models. The results revealed that steady-state simulations provide sufficient information for designing and optimizing the geometry of the secondary capture system. The simulations also pointed out several geometries, which cause significant pressure drop and, as a result, diminish capturing ability of the canopy hood and the additional evacuation system. The boundary conditions were imposed with the help of experimental measurements in the simulated steelmaking factory.

Page generated in 0.0199 seconds