151 |
Theoretical and Experimental Investigation into Stop-Band Properties of Sonic CrystalsMorandi, Federica <1987> January 1900 (has links)
The present work explores the theoretical basis of sound propagation through periodic media and provides experimental evidences of stop-band properties of sonic crystals, periodic arrays of scatterers immersed in air.
In order to investigate the sound field generated by sonic crystals, three theoretical models are used. The band structures are analysed with the Plane Wave Expansion method, while the Multiple Scattering Theory is used to calculate the magnitude of the scattered sound field. The Finite Element analysis is used for both purposes and to provide a stronger bond between the calculations of the theoretical models and the experimental results.
Experimental measurement campaigns are performed at the Open University, Milton Keynes (UK) and at the University of Bologna. The two laboratories offer different testing facilities, respectively an anechoic chamber and a large industrial hall. Three square unit cells are analysed, varying the lattice constant and/or the filling fraction in order to provide a correlation between the two experimental setups.
Measurements are performed to assess the characteristics of the sound field transmitted and reflected from the arrays, posing a special attention to the contribution of side and top edge diffraction. The evanescent behaviour of modes inside the lattice has been investigated by carrying out Impulse Response measurements inside the crystal and testing, with an intensity probe, the components of the sound field that exit the crystal in the two main directions. Finally, standardised indices are calculated that allow to compare the screening performance of sonic crystals to those of common noise barriers.
All measurements setups report coherent results among them and with respect to the theoretical calculations, representing a solid platform for further developments.
|
152 |
Insulation Coordination in Modern Distribution NetworksTossani, Fabio <1988> 21 March 2016 (has links)
The appropriate analysis of the response of distribution networks against Lightning Electro Magnetic Pulse (LEMP) – originated by nearby strikes – requires the availability of accurate coupling models in order to reproduce the real and complex configuration of distribution systems.
The above models represent a fundamental tool for estimating the number of protective devices and their most appropriate location in order to guarantee a given minimum number of flashovers and outages per year. When dealing with real networks, such an optimization could require huge computational efforts due to the vast number of power components and feeders. This thesis thoroughly analyzes many of the possible engineering simplifications that, without losing accuracy, can be adopted in the statistical evaluation of the lightning performance of distribution networks in order to limit computational times.
Particular attention is devoted to the effect of the ground conductivity on the LEMP and on the line parameters; two new analytical expressions for the evaluation of the inverse Laplace transform of the ground impedance matrix elements of multiconductor overhead lines are derived. The first expression is the inverse Laplace transform of Sunde’s logarithmic formula and is given in two equivalent forms. The second expression is the inverse Laplace transform of Sunde’s general integral expression.
Finally, a procedure able to evaluate the lightning performance of a real medium-voltage distribution network, which includes several lines, transformers and surge protection devices is developed and proposed for the analysis of some real cases. Such a procedure allows inferring the characteristics of the statistical distributions of lightning-originated voltages at any point and phase of the network. The analysis aims at assessing the expected mean time between failures of transformers caused by both direct and indirect lightning strikes. / L'analisi della risposta di una rete elettrica di distribuzione a un campo elettromagnetico esterno generato da una scarica atmosferica richiede l'utilizzo di accurati modelli in grado di riprodurre la reale e complessa configurazione della rete.
Tali modelli rappresentano uno strumento fondamentale per la stima del numero di dispositivi di protezione ed il loro appropriato collocamento al fine di garantire il numero minimo annuo di “flashovers” e interruzioni. In una rete di distribuzione reale, tale ottimizzazione può richiedere sforzi computazionali proibitivi a causa dell’elevatissimo numero di componenti di potenza e linee presenti. Questa tesi analizza in maniera esaustiva molteplici semplificazioni ingegneristiche adottabili, al fine di ridurre i tempi computazionali, nella valutazione statistica del numero annuo di guasti di una rete di distribuzione.
Particolare attenzione è dedicata agli effetti della conducibilità finita del suolo sul campo irradiato dal fulmine e sui parametri delle linee. Nella tesi sono derivate due nuove espressioni analitiche per il calcolo della trasformata di Laplace inversa dell’impedenza del terreno. La prima è la trasformata di Laplace inversa dell’espressione di Sunde logaritmica ed è proposta in due forme equivalenti. La seconda è la trasformata di Laplace inversa della più generale espressione integrale di Sunde.
Infine, si è sviluppata una procedura in grado di valutare la “lightning performance” di una rete di distribuzione in media tensione avente configurazione realistica, che comprende “feeder” principali e laterali, pali, cabine secondarie e dispositivi di protezione contro le sovratensioni. La procedura messa a punto, basata sull’applicazione del metodo di Monte Carlo, permette di calcolare l'ampiezza delle tensioni indotte da fulminazione in qualsiasi punto e in ogni fase della rete. L’attività ha riguardato anche la valutazione del tempo medio fra i guasti (MTBF) di ogni trasformatore MT / BT causati da fulminazione indiretta e diretta, parametro di fondamentale rilevanza per l’ente distributore.
|
153 |
Fundamental and Applied Aspects of X-Ray Spectrometry: Detector Influence and Photoelectric Effect Cross-SectionsSabbatucci, Lorenzo <1986> January 1900 (has links)
The first part of this work reports the elementary theory of the atomic photoeffect presented in a form that is suited for practical numerical calculation. A detailed derivation of subshell cross sections for both excitation and ionization, comprising the angular distributions of emitted photoelectrons, is presented taking into account the effect of the polarization of the photons. The theoretical formulas have been implemented in a computer program PHOTACS that calculates tables of excitation and ionization cross sections for any element and subshell. Numerical calculations are practicable for excitations to final states with the principal quantum number up to about 20 and for ionization by photons with energy up to about 2 MeV. The effect of the finite width of atomic energy levels is accounted for by convolving the calculated subshell cross section with a Lorentzian profile. The second part of this work reports unfolding strategies for correcting a radiation measurement from the effects of the detector-pulse handling circuitry system. These strategies comprise the correction from the effects of pulse pile-up (PPU) and the detector response function (DRF). A first principles balance equation for second order PPU is derived and solved for the particular case of rectangular pulse shape. A Monte Carlo (MC) strategy is then implemented in the code MCPPU (Multi-shape pulse pile-up correction) allowing handling more general cases. Regarding the DRF, computed with deterministic or MC codes, it is presented the new tool RESOLUTION which introduces in the computed DRF the effects of energy resolution and incomplete charge collection. In the end the computer program UMESTRAT (Unfolding Maximum Entropy STRATegy) is presented in an updated version which include a new constrain to the total number of photons of the spectrum, which can be easily determined by inverting the diagonal efficiency matrix.
|
154 |
Covariance Evaluation for Nuclear Data of Interest to the Reactivity Loss Estimation of the Jules Horowitz Material Testing ReactorTerranova, Nicholas <1986> January 1900 (has links)
In modern nuclear technology, integral reactor parameter uncertainty evaluation plays a crucial role for both economic and safety purposes. Target accuracies for operating and future nuclear facilities can be obtained only if the available simulation tools, such that computational platforms and nuclear data, are precise enough to produce reduced biases and uncertainties on target reactor parameters.
The quality of any engineering parameter uncertainty quantification analysis strongly depends on the reliability related to the covariance information contained in evaluated libraries. To propagate properly nuclear data uncertainty on nuclear reactor parameters, science-based variance-covariance matrices are then indispensable.
The present work is devoted to nuclear data covariance matrices generation for reactivity loss uncertainty estimations regarding the Jules Horowitz Reactor (JHR), a material testing facility under construction at CEA-Cadarache (France). During depletion, in fact, various fission products appear and the related nuclear data are often barely known. In particular, the strenuous and worldwide recognized problem of generating fission product yields covariances has been mainly considered. Present nuclear data libraries such as JEFF or ENDF/B do not have complete uncertainty information on fission yields, which is limited to only variances. The main goal of this work is to generate science-based and physically consistent fission yields covariances to be associated to the existing European library JEFF-3.1.1. Variance-covariance matrices have been evaluated using CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache) for the most significant fissioning systems.
|
155 |
Computational Modeling of Stability and Laxity in the Natural and Implanted Knee JointSintini, Irene <1988> January 1900 (has links)
The knee joint plays a central role in human motion for its dual function: providing a large range of motion in flexion/extension and stability in the other degrees of freedom. Computational modeling is a powerful tool to deepen our understanding of the joint mechanics, overcoming the main limitations of experimental investigations, i.e. time, cost and impracticability, and providing valuable insights for prosthetic design, rehabilitation and surgical planning. Within this background, the specific aim of this dissertation is threefold: to develop a sequentially-defined kinetostatic model of the knee, comparing the performance of spherical and anatomical surfaces; to develop a dynamic model of the knee to predict the quadriceps force during the squat activity; to estimate the compressive force that the implanted knee joint needs in order to reproduce natural stability. This dissertation presents novel and efficient procedures to model and evaluate the behavior of the natural and implanted knee under the effect of static and dynamic loading conditions, extending the current knowledge in the field of musculoskeletal computational modeling.
|
156 |
Design and Diagnostics of Non-Equilibrium Atmospheric Plasma Sources for Cell Treatment and Bacterial DecontaminationStancampiano, Augusto <1987> January 1900 (has links)
The dissertation focuses on several aspects of non-equilibrium atmospheric plasma technology, also known as cold atmospheric plasma (CAP) technology, including the design, the diagnostic and the optimization of CAP sources for biomedical applications.
The first part of the dissertation concerns the characterization of a single electrode atmospheric pressure plasma jet (APPJ) through various diagnostic techniques, including ICCD and Schlieren high speed imaging. First, the results for the APPJ freely expanding in atmosphere are presented along with the detailed description of the methodology developed for the ICCD analysis of plasma discharges driven by sub-microsecond voltage pulses. Second, results on the investigation on the APPJ source while impinging on a liquid substrate are shown to highlight the influence of the presence of the liquid substrate on the characteristics of the plasma discharge.
In the second part of the dissertation focuses on the application of CAP technology in various branches of the medical field. The applications reported in this dissertation include: plasma treatment of soft reline palatal obturators prostheses for bacterial decontamination and reduction of bacteria adhesion; plasma direct and indirect treatment of L5178Y lymphoma cells to investigate the fundamental mechanisms promoting cell death and cell-cycle arrest; plasma treatment of tooth root canal dentin in standard dental procedures for the enhancement of the adhesion of resin composites for dental restorations. Overall, all findings support the feasibility of these plasma applications and help in the understanding of some of their governing mechanisms.
|
157 |
Development of DC/AC power converters for applications requiring high efficiency.Rizzoli, Gabriele <1987> January 1900 (has links)
Silicon-based power devices have dominated power electronics applications over the last decades. Research and development in microelectronics have pushed the performance of power devices to face some fundamental limitations of silicon material. Wide band-gap semiconductors, such as silicon carbide, offer a solution to the pressing energy efficiency performance requirements of power electronic systems. Silicon carbide power devices can operate at higher temperatures, higher frequencies, and generate less power losses as compared to traditional silicon-based technologies. The use of wide band-gap transistors, however, is not the only way to increase the efficiency of the converters. Special DC to AC topologies, named soft switching converters, can be adopted as well in order to reduce the switching losses of transistors. The development of DC to AC power converters for applications requiring high efficiency is presented in this thesis. Silicon and silicon carbide based inverters, as well as soft switching inverters, have been analyzed and fabricated for performance comparison.
|
158 |
A Comprehensive Study of Fly Ash Based Geopolymers Activated at Room TemperatureNatali, Maria Elia <1984> January 1900 (has links)
This research presents the overall results obtained by investigating the performances of fly ash based geopolymers activated at room temperature. Several characterization tests have been perfomed, starting from a deep understanding of the raw materials, in view of finding alternative solutions to the use of traditional hydraulic binders or ceramic materials via alkali-activation. Different types of geopolymer samples (i.e., pastes, mortars and reinforced mortars) have been formulated by varying the nominal Na2O/SiO2 molar ratio in the activating solutions (and in a specific case the curing conditions) and their chemical, physical, mechanical and microstructural performances have been evaluated comparing the results obtained by using different types of precursors and by a traditional cement-based binder. Specific attention has ben focused on durability issues such as high temperature applications and corrosion resistance of the embedded rebars in geopolymer mortars exposed to aggressive environments. Alkali-activation has been found to represent a valid approach in developing performant cement-free products but step forward are needed in order to optimize the solution chemistry and enhance physical and mechanical properties starting from a deep understand at nanoscale of the geopolymerization reaction mechanisms.
|
159 |
Polymeric membranes for CO2 captureOlivieri, Luca <1987> January 1900 (has links)
The object of this PhD work is the study of innovative, composite and nanostructured polymeric materials for membrane-based separation and removal of CO2 from gaseous streams.
The research on gas separation membranes, in the last two decades was largely devoted to the synthesis and fabrication of new, multiphasic materials, such as copolymers, composite materials bearing fillers dispersed in the polymeric matrix, or functionalized materials having selective functional groups attached to the polymer backbone. The materials investigated in this thesis can be divided in three classes: copolyetherimides: copolymers formed by a glassy polyimide phase, composite membranes, commonly defined as Mixed Matrix Membranes, functionalized materials obtained by chemically attaching amine moieties to a polymeric backbone for the instauration, in appropriate operative conditions, of the facilitated transport mechanism of CO2.
All the above materials have the advantage that their transport properties, in terms of solubility, diffusivity and thus of gas permeability and selectivity, can be tuned and adjusted for the practical purpose. To this end, in this work, an experimental campaign devoted to the measurement of transport properties will be supported by a modeling approach on the continuous scale, for better understanding mass transport properties and the influence of material formulation on them, and develop easily accessible models for the prediction of materials behavior.
|
160 |
Development and Applications of Simulation Codes for Air-to-Water and Ground-Coupled Heat Pump SystemsNaldi, Claudia <1987> January 1900 (has links)
In this Thesis, new simulation codes for the evaluation of a heat pump system seasonal performance are presented. The codes apply to electric air-to-water and ground-coupled heat pump systems based on a vapor compression cycle, used for building heating, cooling and domestic hot water production.
Numerical models are developed to simulate different kinds of air-to-water heat pumps by means of the bin-method. The models take into account the different operating modes of mono-compressor on-off, multi-compressor and inverter-driven heat pumps. The heat pump system seasonal performance is analyzed in terms of SCOP and SEER in relation to the thermal characteristics of the building, the climate of the location and the kind of heat pump control system.
Furthermore, numerical codes for the hourly simulation of air-to-water heat pump systems are developed. The dynamic codes are implemented in the software MATLAB and apply to on-off and inverter-driven heat pumps for building heating, cooling and domestic hot water production, coupled with storage tanks and integrated by a gas boiler or electric heaters. The codes are used, in particular, to evaluate the seasonal performance and the primary energy consumption of the inverter-driven air-to-water heat pump employed in the retrofit of a residential building in Bologna (Italy).
A code for the hourly simulation of ground-coupled heat pump systems is developed. The code, implemented in MATLAB, employs g-functions expressed in analytic form and applies to on-off and inverter-driven heat pumps, used for building heating and/or cooling. The whole system, composed by the heat pump and the coupled borehole heat exchanger field, can be simulated for several years. The code is applied to analyze the effects of the inverter and of the total length of the borehole field on the mean seasonal performance of a ground-coupled heat pump system designed for a residential house with dominant heating loads.
|
Page generated in 0.0175 seconds