• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1314
  • 880
  • 165
  • 144
  • 86
  • 63
  • 63
  • 45
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 30
  • Tagged with
  • 3450
  • 1127
  • 1018
  • 750
  • 486
  • 472
  • 443
  • 441
  • 423
  • 404
  • 397
  • 358
  • 331
  • 310
  • 307
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Investigating the potential anti-diabetic effect of sulforaphane

Luo, Jing 01 July 2014 (has links)
Type 2 diabetes (T2D) is a major public health issue worldwide and it currently affects nearly 26 million people in the United States. It is estimated that one third of Americans will have diabetes by 2050. T2D is a result of chronic insulin resistance and loss of beta-cell mass and function. Both in experimental animals and people, obesity is a leading pathogenic factor for developing insulin resistance, which is always associated with the impairment in energy metabolism, causing increased intracellular fat content in skeletal muscle, liver, fat, as well as pancreatic islets. Constant insulin resistance will progress to T2D when beta-cells are unable to secret adequate amount of insulin to compensate for decreased insulin sensitivity. In the present study, I investigated whether sulforaphane, a natural compound derived from cruciferous vegetables, can prevent high-fat (HF) diet-induced obesity and diabetes in C57BL/6 mice. Dietary intake of sulforaphane (250 mg/kg diet) prevented hyperglycemia and increased insulin sensitivity in HF diet-induced obese mice. Mice treated with sulforaphane had significant lower serum insulin levels (1.93±0.11 μg/dl) as compared to those without treatment (3.09±0.27 μg/dl, P<0.05). In second study, administration of sulforaphane (40 mg/kg body weight daily via gavage) in obese mice enhanced body weight loss and improved insulin sensitivity. Moreover, sulforaphane increased pyruvate oxidation by 28.85% (P<0.05) and enhanced fatty acid oxidation efficiency by 2.2 fold (P<0.05) in primary human muscle cells. These results suggest that sulforaphane may be a naturally occurring insulin-sensitizing agent that is capable of preventing T2D. / Master of Science
362

The effect of PEG-insulin and insulin hexamer assembly on stability in solution and dry powders : hexamer assembly of PEGylated-insulin and insulin studied by multi-angle light scattering to rationally choose the pH and zinc content for analytical methods and formulations of dry powders

Bueche, Blaine January 2010 (has links)
The objective of this research is to further define the relationship between the charge state of insulin, and the self assembly properties of insulin and PEGylated insulin in solution. Polyethylene glycol (PEG) chains were covalently attached to insulin in order to evaluate their impact on insulin's systemic duration of action after pulmonary dosing. This thesis will focus on the assembly properties of the PEG-insulin and insulin, and also demonstrate how the charge state, which was modified by the covalent attachment of PEG, relates to different modes of behavior by anion and cation exchange chromatography. In addition, explain how modifying the assembly state extends to improving formulation properties of spray-dried insulin powders. This thesis is an investigation into the relationship of insulin's charge state controlled by pH and how the charge state affects the self assembly of insulin, especially when the zinc ion is removed. Ionic interaction is one of the major forces affecting insulin assembly. The theory that a change in the charge state of insulin could modulate the ionic interaction and reduce hexamer formation at alkaline conditions was investigated. Experiments were designed to measure the level of hexamer with light scattering, and the amount of hexamer was then correlated with the pH and zinc content of the solutions. The importance of the charge state of the monomer and its behavior extends to chromatography and purification modes as well. Specifically, the purification of various species of PEGylated insulin presents a challenge. By varying mobile phase pH which induces the charge to insulin, an ion exchange method demonstrated very high resolution and controllable interaction between the ion exchange media and the insulin derivatives. A highly accurate method for determining molecular weight and thus the average associated state of insulin in solution has been developed using the MALS (Multi-Angle Light Scattering). Insulin concentration, pH, and metal ion concentrations, were in pharmaceutically relevant ranges. The MALS method was developed to evaluate how the parameters above affect the self-assembly properties of insulin, and use the assembly properties to improve formulations of insulin or PEGylated insulin. To use the light scattering technique the dn/dc (change in refractive index with change in concentration) is required. During the method development, the dn/dc of insulin was measured at 690 nm, and a value of 0.185 mL/g based on theory was confirmed. A novel approach for preparing insulin powders with improved chemical stability, based on maintaining the dissociation of hexamers in solution during the spray drying process was developed. The mode presented here is to remove the zinc ions from solution, increase the pH from 6.6 to 7.8, and maintain a low concentration of insulin approximately 2 to 15 mg/mL. Each of these factors alone decreases the hexamer population in solution, but by combining all three factors, hexamers are driven to very low levels of equilibrium. The increased stability of the powders is predominately related to the decrease in covalent insulin dimer (CID). The data presented correlates a reduced hexamer population in the solution with lower levels of CID's in the dry powder compared to controls. The CID formation rate was reduced by 40% compared to a control.
363

The mechanism of HCO₃-induced insulin secretion in pancreatic β-cells and the involvement in synaptic plasticity. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Apart from CFRD, low cognitive skill index (CSI) was also found in CF patients and was attributed the lacking of vitamin E. Since it is known that insulin plays a role in the learning and memory, decreased plasma insulin level in CF patients is an alternative mechanism for impaired cognitive function. Although numerous studies have found that insulin can improve learning and memory, the mechanism of it is not well understood. In this study, we investigated the effect of insulin on the expression of hippocampal early-phase long-term potentiation (E-LTP) in the immature rats. Hippocampal brain slices were acutely prepared from 10-12 days and 2 months old rats and field excitatory postsynaptic potentials (tEPSCs) were recorded from CA1 region by a multi-electrode in vitro recording system. In the control group, the hippocampal slices of neonatal rats showed no increase in the magnitude of fEPSC after conventional high frequency stimulation (HFS). After pretreatment of the slices with 0.08ng/ml insulin for over one hour, there was no significant change in the magnitude of E-LTP. However, when the insulin concentration increased to 0.8ng/ml, a significant increase in the magnitude of E-LTP was observed. On the contrary, any doses of insulin failed to affect the magnitude of E-LTP of mature rats. These results suggested that insulin could dose-dependently facilitate the production of E-LTP in the hippocampus of infant rats. Application of AG-1024, an inhibitor of insulin receptor, largely abolished the insulin-dependent E-LTP in immature rats rather than adult rats, indicating the involvement of insulin signaling pathway in the insulin effect. On the other hand, increasing the concentration of glucose from 11mM to 22 or 33 mM did not facilitate the E-LTP and application of indinavir, a blocker of insulin-sensitive glucose transporter-4, did not inhibit the effect of insulin. Therefore, it is unlikely that the facilitory action of insulin on E-LTP is via an indirect effect on glucose homeostasis or utilization. Pretreatment with the MAPK pathway inhibitor PD98059 blocked insulin-mediated E-LTP facilitation. Furthermore, the tetanic stimulation induced a significant increase in the level of phosphorylated p42MAPK in the insulin-treated hippocampus than that in the control group. In conclusion, our results suggested that insulin could facilitate the production of hippocampal E-LTP in infant rats, which may play an important role in modulating the expression of LTP in the developing brain and perhaps is an underlying mechanism for the improving effect of insulin on learning and memory. Since insulin plays an important role in the developing brain, perhaps the deficiency of insulin effect resulted from CF patients induces the impairment of cognitive function. / Cystic fibrosis (CF), which is caused by the deficiency of cystic fibrosis transmembrne conductance regulator (CFTR), is the most common autosomal recessive systemic disease with an incidence of 1: 2500 in Caucasians. Cystic fibrosis-related diabetes (CFRD), as one of the complications of CF patients, is regarded as one of the leading co-morbidity in CF patients. The mechanism ofCFRD is attributed to the reduced number of islets due to pancreatic fibrosis caused by the loss of CFTR in pancreatic duct. However, the above mechanism failed to explain the dynamics of insulin secretion induced by glucose tolerance test (GTT) in some CF patients and therefore, we were forced to re-consider the mechanism for the pathogenesis of CFRD. Interestingly, the following facts imply that perhaps there is another mechanism for the onset of CFRD: decreased insulin secretion and decreased plasma HCO3 - concentration was observed in the metabolic acidosis disease, plasma HCO3- level increased accompanied by the elevation of plasma insulin after food intake and CFTR accounted for HCO3 - transport in many epithelial cells. These facts promoted us to hypothesize that the loss of HCO3--induced insulin secretion resulting from the deficiency of CFTR is an alternative mechanism for the onset of CFRD. Our results showed that HCO3- could induce insulin secretion of isolated islets from rats. Ca2+ imaging revealed that HCO3- dose-dependently induced an increase in intracellular Ca2+ ([Ca2+] i) in RIN-5F cells, an insulin-secreting cell line. Removal of extracellular Ca2+ or addition of nifedipine, the blocker of L-type Ca 2+ channel, decreased the effect of HCO3- significantly, indicating the activation of L-type Ca2+ channel during HCO3- stimulation. The inhibitory effect of BaCl2 implied the involvement of K+ channel. The results that HCO3--induced increase in [Ca 2+]i was reduced by PKA inhibitor and sAC blocker demonstrated that the pathway of sAC-cAMP-PKA-ATP-sentitive K+ channel (K ATP channel) was responsible for the effect of HCO3 -. The reduction of extracellular Cl- or the inhibitor of anion exchanger (AE) inhibited the [Ca2+]i increase induced by HCO3- significantly but the omission of external Na+ failed. The facts that CFTR blocker decreased the effect of HCO3- markedly and the expression of CFTR in RIN-5F cells revealed by western blotting suggested the CFTR-mediated HCO3- transport. These results suggested that HCO 3- could induce insulin secretion in a CFTR-dependent manner, which provided a new insight into the understanding of pathogenesis of CFRD and paved the way for the therapy of CFRD. / Zhao, Wenchao. / "November 2010." / Advisers: Chang Chan; Wing Ho Yung. / Source: Dissertation Abstracts International, Volume: 73-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 115-138). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
364

Regulation of insulin signalling by exercise in skeletal muscle

Wadley, Glenn, mikewood@deakin.edu.au January 2003 (has links)
Regular physical activity improves insulin action and is an effective therapy for the treatment and prevention of type 2 diabetes. However, little is known of the mechanisms by which exercise improves insulin action in muscle. These studies investigate the actions of a single bout of exercise and short-term endurance training on insulin signalling. Twenty-four hours following the completion of a single bout of endurance exercise insulin action improved, although greater enhancement of insulin action was demonstrated following the completion of endurance training, implying that cumulative bouts of exercise substantially increase insulin action above that seen from the residual effects of an acute bout of prior exercise. No alteration in the abundance and phosphorylation of proximal members of the insulin-signalling cascade in skeletal muscle, including the insulin receptor and IRS-1 were found. A major finding however, was the significant increase in the serine phosphorylation of a known downstream signalling protein, Akt (1.5 fold, p ≤0.05) following an acute bout of exercise and exercise training. This was matched by the observed increase in protein abundance of SHPTP2 (1.6 fold, p ≤0.05) a protein tyrosine phosphatase, in the cytosolic fraction of skeletal muscle following endurance exercise. These data suggest a small positive role for SHPTP2 on insulin stimulated glucose transport consistent with transgenic mice models. Further studies were aimed at examining the gene expression following a single bout of either resistance or endurance exercise. There were significant transient increases in IRS-2 mRNA concentration in the few hours following a single bout of both endurance and resistance exercise. IRS-2 protein abundance was also observed to significantly increase 24-hours following a single bout of endurance exercise indicating transcriptional regulation of IRS-2 following muscular contraction. One final component of this PhD project was to examine a second novel insulin-signalling pathway via c-Cbl tyrosine phosphorylation that has recently been shown to be essential for insulin stimulated glucose uptake in adipocytes. No evidence was found for the tyrosine phosphorylation of c-Cbl in the skeletal muscle of Zucker rats despite demonstrating significant phosphorylation of the insulin receptor and Akt by insulin treatment and successfully immunoprecipitating c-Cbl protein. Surprisingly, there was a small but significant increase in c-Cbl protein expression following insulin-stimulation, however c-Cbl tyrosine phosphorylation does not appear to be associated with insulin or exercise-mediated glucose transport in skeletal muscle.
365

The effect of voluntary exercise, with/without antioxidants, on meal-induced insulin sensitization (MIS) in health and in prediabetes AND The study of cellular signaling pathways associated with MIS in skeletal muscle

Chowdhury, Kawshik K. 23 July 2012 (has links)
Background: The augmented whole body glucose uptake response to insulin during the postprandial state is described as meal-induced sensitization (MIS). MIS occurs when the presence of food in the upper gastrointestinal tract (GIT) activates two feeding signals (activation of hepatic parasympathetic nerves and elevation of hepatic glutathione level), and causes insulin to release hepatic insulin sensitizing substance (HISS), which stimulates glucose uptake in peripheral tissues. The impairment of HISS release results in the absence of meal-induced insulin sensitization (AMIS), causing progression to a cluster of metabolic, vascular, and cardiac dysfunction, which we refer to as components of the AMIS syndrome. Objectives: The objective of my doctoral research was to study the manipulation of the HISS-pathway, in age- and diet-induced AMIS models, with exercise ± antioxidants. Also, in a separate project I studied the signaling pathways involved with the HISS action in skeletal muscle. Methods: The 7-day voluntary running was used as exercise intervention to manipulate the HISS pathway in healthy and prediabetic rats. The interaction of an antioxidant cocktail, SAMEC (S-adenosylmethionine + vitamin E + vitamin C), with the effects of exercise on postprandial insulin response was studied. Moreover, in the signaling studies the insulin and 5'-adenosine monophosphate activated protein kinase (AMPK) pathways were examined to test their possible involvement with the HISS action in skeletal muscle. Results: Voluntary running-wheel exercise for 7 days increases the postprandial glucose uptake response to insulin in health and in prediabetes through enhancement/restoration of HISS action. Supplementation with SAMEC during 7 days of exercise does not either harm or add benefits to the positive effects of exercise on insulin sensitivity. Finally, the signaling studies indicate that HISS increases the rate of glycogen synthesis in muscle through an insulin/AMPK-independent pathway.
366

The effect of voluntary exercise, with/without antioxidants, on meal-induced insulin sensitization (MIS) in health and in prediabetes AND The study of cellular signaling pathways associated with MIS in skeletal muscle

Chowdhury, Kawshik K. 23 July 2012 (has links)
Background: The augmented whole body glucose uptake response to insulin during the postprandial state is described as meal-induced sensitization (MIS). MIS occurs when the presence of food in the upper gastrointestinal tract (GIT) activates two feeding signals (activation of hepatic parasympathetic nerves and elevation of hepatic glutathione level), and causes insulin to release hepatic insulin sensitizing substance (HISS), which stimulates glucose uptake in peripheral tissues. The impairment of HISS release results in the absence of meal-induced insulin sensitization (AMIS), causing progression to a cluster of metabolic, vascular, and cardiac dysfunction, which we refer to as components of the AMIS syndrome. Objectives: The objective of my doctoral research was to study the manipulation of the HISS-pathway, in age- and diet-induced AMIS models, with exercise ± antioxidants. Also, in a separate project I studied the signaling pathways involved with the HISS action in skeletal muscle. Methods: The 7-day voluntary running was used as exercise intervention to manipulate the HISS pathway in healthy and prediabetic rats. The interaction of an antioxidant cocktail, SAMEC (S-adenosylmethionine + vitamin E + vitamin C), with the effects of exercise on postprandial insulin response was studied. Moreover, in the signaling studies the insulin and 5'-adenosine monophosphate activated protein kinase (AMPK) pathways were examined to test their possible involvement with the HISS action in skeletal muscle. Results: Voluntary running-wheel exercise for 7 days increases the postprandial glucose uptake response to insulin in health and in prediabetes through enhancement/restoration of HISS action. Supplementation with SAMEC during 7 days of exercise does not either harm or add benefits to the positive effects of exercise on insulin sensitivity. Finally, the signaling studies indicate that HISS increases the rate of glycogen synthesis in muscle through an insulin/AMPK-independent pathway.
367

The role of the growth hormone/IGF-I system on islet cell growth and insulin action /

Robertson, Katherine. January 2007 (has links)
The study of diabetes mellitus is vital in this day and age because its incidence is increasing at an alarming rate. Diabetes results in the loss of function of beta-cells within the pancreas. Insulin resistance contributes to diabetes but the human body can compensate in various ways such as increasing the islet cell mass, glucose disposal and insulin secretion, in order to prevent the onset of diabetes. Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are two integral hormones important in both glucose homeostasis and islet cell growth. Early studies using cultured islet cells have demonstrated positive regulation of beta-cell growth by both GH and IGF-I. To evaluate their relevance on normal beta-cell growth, compensatory growth, as well as in insulin responsiveness, we have used two mouse models that represent opposite manipulations of the GH/IGF-I axis. Specifically, the growth hormone receptor gene deficient (GHR-/-) and the IGF-I overexpression (MT-IGF) mice, to help understand the role of glucose homeostasis and islet cell growth in the GH/IGF-I axis. GH is essential for somatic growth and development as well as maintaining metabolic homeostasis. It is known that GH stimulates normal islet cell growth. Moreover, GH may also participate in islet cell overgrowth and compensate for insulin resistance induced by obesity. To determine whether the islet cell overgrowth is dependent on GH signaling, we studied the response of GHR-/- mice to high-fat diet (HFD)-induced obesity. We also studied the insulin responsiveness in GHR-/- mice. On the other hand, IGF-I promotes embryonic development, postnatal growth and the maturation of various organ systems. The notion that IGF-I stimulates islet cell growth has been challenged in recent years by results from IGF-I and receptor gene targeted models. We have characterized MT-IGF mice which overexpress the IGF-I gene. / The results of our studies indicate that (1) GH is essential for normal islet cell growth, but not required for compensatory overgrowth of the islets in response to obesity, (2) GHR gene deficiency caused delayed insulin responsiveness in skeletal muscle; in contrast to elevated insulin sensitivity in the liver; (3) although overexpression does not stimulate islet cell growth, a chronic IGF-I elevation caused significant hypoglycemia, hypoinsulinemia, and improved glucose tolerance, (4) finally IGF-I overexpression mice are resistant to experimental diabetes.
368

Reducing injection pain in children and adolescents with type 1 diabetes : studies on indwelling catheters and injection needles /

Hanas, Ragnar, January 2001 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2001. / Härtill 7 uppsatser.
369

Endocrine aspects of obesity and weight reduction by bariatric surgery with special emphasis on beta cell function /

Guldstrand, Marie, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 6 uppsatser.
370

Aplikace inzulínu v ošetřovatelské praxi / The application of insulin in nursing practice.

PIVOŇKOVÁ, Lenka January 2017 (has links)
Abstract The diploma thesis is focused on the application of insulin in nursing practice. In 2013, there were 678,935 patients with diabetes mellitus in the Czech Republic. Of this, 17.5 % of patients were treated with insulin. When applying insulin, we must observe certain principles and procedures to avoid complications. The diploma thesis consists of the theoretical and research part. The theoretical part describes the characteristics of diabetes mellitus, describes insulin and its history, regimens, types and storage of insulin. It is also focused on the insulin application process and the education of patients. In relation to the topic, two objectives were set. The first objective was to find out how to apply insulin in nursing practice based on evidence. The second objective was to find out how the nursing process is provided by a nurse when applying insulin in nursing practice. Following these objectives, two research questions have been identified. First research question: How is insulin applied in nursing practice? The second research question: How is the nursing process filled with the insulin application? The practical part was elaborated using a qualitative research survey. The research was carried out using two variants of a semi-structured interview. The first variation of the interview was for insulin-like patients. The second variant was intended for general nurses from standard departments of selected hospitals and for nurses working in diabetological outpatient clinics. The first set consisted of ten respondents, of which 5 were women and 5 men. The second group consisted of 9 respondents, of whom all were women. The conversations were recorded and then literally overwritten. Interviews were overwritten using the pencil-paper method and further analyzed by Open Encoding. Based on data analysis, 5 categories were created with several subcategories for patients and 6 categories with several subcategories for nurses. Based on the analysis of the data, it can be said that patients or nurses do not apply insulin completely correctly. I perceive the basic problem in the distribution of insulin by species and its correct application, which varies for each species. I see another problem in incorrect application according to the length of the needle, such as the angle of the needle and the formation of the skin kelp. The output of the diploma thesis will be the standard of nursing care based on EBP, in order to highlight the shortcomings we found in the research investigation and to prevent their prevention. This standard aims to refine and improve the care provided.

Page generated in 0.0979 seconds