• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2053
  • 152
  • 67
  • 60
  • 60
  • 60
  • 45
  • 44
  • 44
  • 44
  • 24
  • 15
  • 1
  • 1
  • 1
  • Tagged with
  • 2260
  • 1609
  • 876
  • 529
  • 463
  • 371
  • 321
  • 318
  • 253
  • 220
  • 215
  • 196
  • 193
  • 184
  • 179
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Ferramenta para apoio a modelagem de sistemas com redes de petri

Guarda, Alvaro January 1989 (has links)
O trabalho propõe uma ferramenta para apoio A modelagem de sistemas utilizando como linguagem de modelagem as Redes de Petri. são discutidos que tipos de auxílio são necessários no processo de modelagem de sistemas e as classes de Redes de Petri que podem ser utilizadas na ferramenta proposta. A dissertação mostra a estrutura e a arquitetura da ferramenta, descreve a implementação de um protótipo e apresenta um exemplo de use deste. Na definição da ferramenta b dada ênfase na verificação automática de propriedades das redes. / A tool to support system modeling with Petri Nets is proposed. The kinds of assistance needed in the modeling system process, and the Petri Net classes that can be used in the proposed tool are discussed. The dissertation shows the structure and the architecture of the tool, describing the prototype implementation and presenting an example of its use. In the definition of the tool, emphasis is given in the automatic verification of the net properties.
232

A inteligência competitiva como ferramenta para a organização estratégica do setor turístico : o caso do circuito internacional das missões jesuíticas do Mercosul

Reis, Helenice Rodrigues January 2000 (has links)
O uso e a análise da informação podem transformar radicalmente os processos produtivos de setores específicos de organizações e de ambientes sociais e econômicos. A presente dissertação propõe-se a realizar um monitoramento de informações com a seleção, sistematização, análise e interpretação de dados e informações para o setor turístico, especialmente para o Circuito Internacional das Missões Jesuíticas (CIMJ), declarado em 1997 pela UNESCO como um dos quatro roteiros históricos internacionais mais importantes do mundo e o primeiro roteiro turístico oficial do Mercosul. Através desse processo, buscou-se a identificação de problemas e a antecipação de oportunidades visando à maior organização do setor turístico selecionado e, consequentemente, à maior competitividade. Os resultados da pesquisa, oriundos da análise comparativa de dados e informações de três rotas turísticas internacionais, permitiram a identificação de variáveis e indicadores para um maior conhecimento de suas posições estratégicas, a validação de uma metodologia para o desenvolvimento de um processo de inteligência competitiva, além de sugerir algumas linhas para a organização estratégica do setor.
233

Modelo neuro-evolutivo de coordenação adaptativa em ambientes dinâmicos

Côrtes, Deise da Silva January 2005 (has links)
Em ambientes dinâmicos e complexos, a política ótima de coordenação não pode ser derivada analiticamente, mas, deve ser aprendida através da interação direta com o ambiente. Geralmente, utiliza-se aprendizado por reforço para prover coordenação em tais ambientes. Atualmente, neuro-evolução é um dos métodos de aprendizado por reforço mais proeminentes. Em vista disto, neste trabalho, é proposto um modelo de coordenação baseado em neuro-evolução. Mais detalhadamente, desenvolveu-se uma extensão do método neuro-evolutivo conhecido como Enforced Subpopulations (ESP). Na extensão desenvolvida, a rede neural que define o comportamento de cada agente é totalmente conectada. Adicionalmente, é permitido que o algoritmo encontre, em tempo de treinamento, a quantidade de neurônios que deve estar presente na camada oculta da rede neural de cada agente. Esta alteração, além de oferecer flexibilidade na definição da topologia da rede de cada agente e diminuir o tempo necessário para treinamento, permite também a constituição de grupos de agentes heterogêneos. Um ambiente de simulação foi desenvolvido e uma série de experimentos realizados com o objetivo de avaliar o modelo proposto e identificar quais os melhores valores para os diversos parâmetros do modelo. O modelo proposto foi aplicado no domínio das tarefas de perseguição-evasão.
234

Agentes improvisacionais como agentes deliberativos

Moraes, Marcia Cristina January 2004 (has links)
Improvisação tem sido considerada uma característica importante para agentes que pretendem operar de maneira consistente com a situação do momento, exibindo um comportamento credível e interessante. A improvisação deve estar presente tanto nos agentes individuais quanto nas sociedades de agentes. Desta maneira, esta tese irá abordar estes dois aspectos da improvisação. Propomos a visão de que, agentes capazes de realizar improvisação, os agentes improvisacionais, são um tipo de agente deliberativo capaz de solucionar problemas por improvisação. Neste sentido, buscamos identificar dentro de uma arquitetura clássica de agentes deliberativos, a arquitetura BDI (belief-desire-intention), a existência e/ou a possibilidade da inclusão de componentes de improvisação nesta arquitetura. Para resolver problemas complexos, estes agentes precisam estar agrupados em sociedades e estas sociedades, por sua vez, precisam produzir comportamentos coerentes. A coordenação é a área da Inteligência Artificial responsável por este objetivo. Propomos que a coordenação de agentes que improvisam pode ser realizada por meio de um processo de direção improvisacional, no sentido usado no contexto do teatro improvisacional. Ao longo deste documento, iremos mostrar nosso entendimento sobre agentes improvisacionais como agentes deliberativos e coordenação como direção improvisacional. Com isto, defende-se nesta tese que o uso da improvisação em agentes improvisacionais possibilita que os agentes improvisem comportamentos interativos, de maneira coerente, melhorando seu desempenho como solucionadores de problemas, criando e mantendo uma ilusão de vida para os agentes interativos e contribuindo para o aperfeiçoamento dos sistemas multiagentes.
235

Modelo de um neurônio diferenciador-integrador para representação temporal em arquiteturas conexionistas

Moser, Lúcio Dorneles January 2004 (has links)
O presente trabalho analisa diferentes modelos de representação temporal usados em arquiteturas conexionistas e propõe o uso de um novo modelo neural, chamado Neurônio Diferenciador-Integrador (NDI) para aplicação com processamento de sinais temporais. O NDI pode ser interpretado como filtro digital. Seu funcionamento exige poucos recursos computacionais e pode ser de grande valia em problemas onde a solução ideal depende de uma representação temporal instantânea, facilidade de implementação, modularidade e eliminação de ruído. Após a definição do modelo, o mesmo é sujeito a alguns experimentos teóricos utilizado em conjunto com arquiteturas conexionistas clássicas para resolver problemas que envolvem o tempo, como previsão de séries temporais, controle dinâmico e segmentação de seqüências espaço-temporais. Como conclusão, o modelo neural apresenta grande potencialidade principalmente na robótica, onde é necessário tratar os sinais sensoriais ruidosos do robô de forma rápida e econômica.
236

Formalização da comunicação de conhecimentos probabilísticos em sistemas multiagentes : uma abordagem baseada em lógica probabilística

Gluz, Joao Carlos January 2005 (has links)
Durante os últimos anos as áreas de pesquisa sobre Agentes Inteligentes, Sistemas Multiagentes e Comunicação entre Agentes têm contribuído com uma revolução na forma como sistemas inteligentes podem ser concebidos, fundamentados e construídos. Sendo assim, parece razoável supor que sistemas inteligentes que trabalhem com domínios probabilísticos de conhecimento possam compartilhar do mesmo tipo de benefícios que os sistemas mais tradicionais da Inteligência Artificial receberam quando adotaram as concepções de agência, de sistemas compostos de múltiplos agentes e de linguagens de comunicação entre estes agentes. Porém, existem dúvidas não só sobre como se poderia escalar efetivamente um sistema probabilístico para uma arquitetura multiagente, mas como se poderia lidar com as questões relativas à comunicação e à representação de conhecimentos probabilísticos neste tipo de sistema, principalmente tendo em vista as limitações das linguagens de comunicação entre agentes atuais, que não permitem comunicar ou representar este tipo de conhecimento. Este trabalho parte destas considerações e propõe uma generalização do modelo teórico puramente lógico que atualmente fundamenta a comunicação nos sistemas multiagentes, que será capaz de representar conhecimentos probabilísticos. Também é proposta neste trabalho uma extensão das linguagens de comunicação atuais, que será capaz de suportar as necessidades de comunicação de conhecimentos de natureza probabilísticas. São demonstradas as propriedades de compatibilidade do novo modelo lógico-probabilístico com o modelo puramente lógico atual, sendo demonstrado que teoremas válidos no modelo atual continuam válidos no novo modelo. O novo modelo é definido como uma lógica probabilística que estende a lógica modal dos modelos atuais. Para esta lógica probabilística é definido um sistema axiomático e são demonstradas sua correção e completude. A completude é demonstrada de forma relativa: se o sistema axiomático da lógica modal original for completo, então o sistema axiomático da lógica probabilística proposta como extensão também será completo. A linguagem de comunicação proposta neste trabalho é definida formalmente pela generalização das teorias axiomáticas de agência e comunicação atuais para lidar com a comunicação de conhecimentos probabilísticos e pela definição de novos atos comunicativos específicos para este tipo de comunicação. Demonstra-se que esta linguagem é compatível com as linguagens atuais no caso não-probabilístico. Também é definida uma nova linguagem para representação de conteúdos de atos de comunicação, baseada na lógica probabilística usada como modelo semântico, que será capaz de expressar conhecimentos probabilísticos e não probabilísticos de uma maneira uniforme. O grau de expressibilidade destas linguagens é verificado por meio de duas aplicações. Na primeira aplicação demonstra-se como a nova linguagem de conteúdos pode ser utilizada para representar conhecimentos probabilísticos expressos através da forma de representação de conhecimentos probabilísticos mais aceita atualmente, que são as Redes Bayesianas ou Redes de Crenças Probabilísticas. Na outra aplicação, são propostos protocolos de interação, baseados nos novos atos comunicativos, que são capazes de atender as necessidades de comunicação das operações de consistência de Redes Bayesianas secionadas (MSBNs, Multiple Sectioned Bayesian Networks) para o caso de sistemas multiagentes.
237

Inteligência artificial popperiana

Schuler, Joao Paulo Schwarz January 2002 (has links)
A inteligência tem sido estudada como fruto de evolução biológica. Nas últimas centenas de milhões de anos, a inteligência tem evoluído juntamente com a biologia. Essa conclusão pode ser obtida ao analisar o comportamento das criaturas que emergiram assim como a sua capacidade de armazenar e processar informação. A evolução gerou criaturas possuidoras de cérebros com grande poder de adaptação. Partindo-se do pressuposto que a inteligência humana é resultado de um processo evolutivo paulatino que ocorreu ao longo de milhões de anos, faz sentido tentar repetir os mesmos passos dados ao longo da evolução da inteligência artificialmente. A evolução oferece uma rota que vai desde tipos de mentes simples até tipos de mentes mais complexas apresentando um caminho de características e capacidades que evoluíram ao longo do tempo. No presente trabalho, acredita-se que esse caminho seguido pela evolução é uma boa fonte de inspiração para a geração de inteligência artificial. De acordo com Dennett, um tipo de mente que apareceu ao longo da evolução é a mente popperiana que aprende as regras do ambiente e tem a capacidade de imaginar ou planejar estados futuros permitindo que ela se adapte com facilidade a novas e inesperadas situações. Sendo assim, modela-se e implementa-se um agente popperiano capaz de aprender as regras do seu ambiente e planejar ações futuras baseando-se no seu aprendizado. Por fim, são implementados dois protótipos de agentes popperianos para resolver problemas distintos e observa-se a capacidade dos agentes popperianos em se adaptar às condições do seu meio para alcançar seus objetivos.
238

Negociação pedagógica aplicada a um ambiente multiagente de aprendizagem colaborativa

Flores, Cecilia Dias January 2005 (has links)
Diferentes correntes da psicopedagogia apontam que a negociação é fundamental em interações de ensino-aprendizagem. No entanto, pouca pesquisa tem sido baseada em uma noção precisa do que é negociação e de como esta se relaciona com a aprendizagem. Este trabalho descreve um modelo para negociação pedagógica, aplicado a um ambiente multiagente de aprendizagem. Após discussão de exemplos ilustrativos e revisão bibliográfica de áreas de pesquisa relacionadas, a negociação é definida utilizando quatro características: o que está sendo negociado, os estados iniciais e finais de negociação e o processo de negociação em si. A tese concentra-se nos processos de negociação, para que um modelo seja desenvolvido baseado na interação argumentativa entre o sistema e o aluno, a partir da construção de redes bayesianas. É proposto que a atitude proposicional mais relevante para interações de negociação pedagógica está relacionada a um processo de equalização mútua de graus de confiança entre o professor e o aluno. Como conclusão, são apresentados os resultados alcançados, resumidos na implementação do Ambiente Multiagente ProbabiLístico Inteligente de Aprendizagem – AMPLIA. Os primeiros resultados da implementação do ambiente e o modelo geral da negociação pedagógica implantada puderam ser vistos durante um curso piloto realizado no Hospital de Clínicas de Porto Alegre.
239

A utilização de raciocínio baseado em casos para a análise de crédito e cobrança

Isolani, Marcelo Costa January 2002 (has links)
Data Warehouse (DW) é um processo que aglutina dados de fontes heterogêneas, incluindo dados históricos e dados externos para atender à necessidade de consultas estruturadas e ad-hoc, relatórios analíticos e de suporte de decisão. Já um Case-Based Reasoning (CBR) é uma técnica de Inteligência Artificial (AI – Artificial Intelligence) para a representação de conhecimento e inferência, que propõe a solução de novos problemas adaptando soluções que foram usadas para resolver problemas anteriores. A descrição de um problema existente, ou um caso é utilizado para sugerir um meio de resolver um novo problema, avisar o usuário de possíveis falhas que ocorreram anteriormente e interpretar a situação atual. Esta dissertação tem por objetivo apresentar um estudo do uso de um DW combinado com um CBR para a verificação de “risco” de inadimplência no setor de telecomunicações. Setor este que devido as grandes mudanças que ocorreram no mercado, que passam desde a privatização do setor e a entrada de novas operadoras fixas e celulares, criando um ambiente de concorrência, anteriormente inexistente, possibilitando assim ao cliente trocar de operadora ou até mesmo deixar a telefonia fixa e ficar somente com a celular, e vai até ao fato da estabilização econômica e as novas práticas de mercado, que determinou a baixa das multas, tornando assim compensador aos clientes deixar as faturas vencidas a perder juros de aplicações ou pagar juros bancários para quitar a sua dívida, visto que a empresa telefônica só pode aplicar as sanções com o prazo de 30 dias. Este trabalho mostra o desenvolvimento de um CBR para aplicação na área de Crédito e Cobrança, onde são detalhados os vários passos, a utilização do mesmo junto ao um DW, o que proporciona a comparação com desenvolvimento de outros sistemas similares e as diferenças (vantagens e desvantagens) que isso traz ao mesmo.
240

Aspectos matemáticos do problema de aprendizagem em inteligência artificial

Moraes, Jean Carlo Pech de January 2006 (has links)
O objetivo deste trabalho é apresentar a base teórica para o problema de aprendizagem através de exemplos conforme as ref. [14], [15] e [16]. Aprender através de exemplos pode ser examinado como o problema de regressão da aproximação de uma função multivaluada sobre um conjunto de dados esparsos. Tal problema não é bem posto e a maneira clássica de resolvê-lo é através da teoria de regularização. A teoria de regularização clássica, como será considerada aqui, formula este problema de regressão como o problema variacional de achar a função f que minimiza o funcional Q[f] = 1 n n Xi=1 (yi ¡ f(xi))2 + ¸kfk2 K; onde kfk2 K é a norma em um espa»co de Hilbert especial que chamaremos de Núcleo Reprodutivo (Reproducing Kernel Hilbert Spaces), ou somente RKHS, IH definido pela função positiva K, o número de pontos do exemplo n e o parâmetro de regularização ¸. Sob condições gerais a solução da equação é dada por f(x) = n Xi=1 ciK(x; xi): A teoria apresentada neste trabalho é na verdade a fundamentação para uma teoria mais geral que justfica os funcionais regularizados para a aprendizagem através de um conjunto infinito de dados e pode ser usada para estender consideravelmente a estrutura clássica a regularização, combinando efetivamente uma perspectiva de análise funcional com modernos avanços em Teoria de Probabilidade e Estatística.

Page generated in 0.0349 seconds