71 |
Investigação sobre procedimentos de identificação de cargas axiais em dutos submersos a partir de respostas vibratórias / Investigation of a procedure for the identification of axial loads applied to a submerged beam by using vibration responseKitatani Júnior, Sigeo 31 July 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present thesis it is proposed and evaluated, both numerically and experimentally, an inverse procedure for the indirect determination of axial loads applied to submersed pipe-like structures, based on their dynamic responses. The investigation is motivated by the existence of practical problems encountered in the oil industry. An experimental bench has been designed and built, consisting in a reservoir inside which a tubular stainless steel beam has been mounted and tested. Special fixtures have been designed in such a way to enable to apply controlled axial loads and represent different types of boundary conditions. In parallel, computational routines have been developed for the two-dimensional modeling of the structure accounting for the effects of axial loads, flexible supports and fluid-structure interaction, based on the finite element approach. Having in mind the difficulties which are expected to be encountered when the methodology be applied in real conditions, some special dynamic test procedures have been considered, including Operational Modal Analysis (OMA), which enables to identify modal parameters from output-only measurements. Numerous scenarios have been considered using either numerically simulated or experimentally measured responses. As for the resolution of the inverse problem, two strategies have been investigated: the first consists in the deterministic resolution of a constrained optimization problem based on evolutionary algorithms, and the second, which enables to account for the presence of uncertainties in the experimental data, is a stochastic approach based on Bayesian inference, combined with Markov chains and Metropolis-Hastings algorithm. The results obtained confirm the operational feasibility and satisfactory accuracy provided by the suggested identification approaches. / Na presente tese de doutorado é proposto e avaliado numérica e experimentalmente um procedimento inverso para determinação indireta de carregamentos axiais aplicados a estruturas tubulares submersas a partir de suas respostas dinâmicas. A investigação é motivada pela existência de problemas práticos evidenciados pelo setor de tecnologia submarina da indústria petrolífera. Nesta proposta, as cargas axiais, que na prática não podem ser medidas diretamente, são identificadas através da resolução de um problema inverso, formulado como um problema de otimização, a partir das respostas dinâmicas da estrutura. Uma bancada experimental foi projetada e construída, composta de um reservatório dentro do qual foi ensaiado um tubo metálico de seção circular. Mecanismos de fixação e aplicação de carga à estrutura foram especialmente projetados de modo a permitir consideração de dois tipos diferentes de condição de contorno. Paralelamente, rotinas computacionais foram desenvolvidas para a modelagem numérica bidimensional da estrutura incluindo os efeitos de interação fluido-estrutura e das cargas axiais, com base no Método de Elementos Finitos. Tendo em vista o objetivo da aplicação da metodologia proposta em situações práticas, as quais envolvem dificuldades de execução de ensaios em ambientes submarinos, foram investigados procedimentos de ensaios dinâmicos especialmente adaptados a estas condições. Com este intuito, foi analisado o emprego da técnica de análise modal experimental denominada OMA (Operational Modal Analysis), que permite obter os parâmetros modais sem conhecimento das forças de excitação da estrutura. Numerosos cenários de identificação foram estudados utilizando tanto respostas dinâmicas simuladas numericamente, quanto respostas medidas experimentalmente. Visando considerar a influência de incertezas nos dados experimentais, o problema de identificação da carga axial também foi tratado utilizando uma abordagem estocástica, com base em inferência bayesiana, a partir da simulação de cadeias de Markov, associada ao algoritmo Metropolis-Hastings. Os resultados obtidos atestam a viabilidade operacional e a precisão satisfatória do procedimento de identificação proposto. / Doutor em Engenharia Mecânica
|
72 |
Modelagem matemática e simulação numérica para solução de problemas de interação fluido-estrutura utilizando metodologia de fronteira imersaKitatani Júnior, Sigeo 28 September 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, the combined multi-direct forcing and immersed boundary method
(IBM) were presented to simulate
uid-structure interaction problems. The multi-direct
forcing is used aim at satisfying the no-slip condition in the immersed boundary. For the
numerical simulations was used a multi-purpose computer code that is being developed
in the MFlab - Fluid Mechanics Laboratory of Federal University of Uberl^andia. Tests
are made to validate the numerical schemes and routines were implemented to simulate
uid-structures interaction problems. Furthermore, computational tools are developed to
construct and manage and optimize the use of a Beowulf cluster where all the parallel
simulations presented in this work were done. The Method of Manufactured Solutions
has been used for order-of-accuracy verication in the computational
uid dynamics code.
Two
uid-structure interaction problems were studied using this methodology. The rst is
a
ow over a sphere for some Reynolds numbers. The results were compared to empirical
results, obtaining satisfactory approximations. The second one is a immersed simple
pendulum. For this problem the results are in agreement with physics. Indeed, these
are preliminar results. New tests must be done to make progress in the methodology.
Improvements are proposed in the IBM, in the
uid-structure model, in the turbulence
model, in the method used to discretize the
uid domain. It is also proposed to apply the
methodology to real problems as risers and valves. / O presente trabalho tem como principal objetivo a aplicação do método multifoçagem (MMF) para solução numérica tridimensional de problemas de interação uidoestrutura,
buscando-se garantir a condição de não-escorregamento na região da fronteira
imersa. Para as simulações numéricas foi utilizado um código computacional multipropósito em desenvolvimento no MFlab - Laboratório de Mecânica dos Fluidos da Universidade
Federal de Uberlândia. Foram feitas modificações nesse código para que se pudesse
validá-lo para solução de problemas com fronteira imersa e foi implementada uma rotina
para solução de um problema de interação uido-estrutura total. Além disso, foi desenvolvido
um pacote de ferramentas computacionais que possibilitou instalar e melhorar o
desempenho de um cluster do tipo Beowulf utilizado para o desenvolvimento das simulações
num eriças em paralelo do presente trabalho. Utilizando o Método das Soluções Manufaturadas
foram obtidas soluções sintetizadas para as equações de Navier-Stokes, o que
possibilitou obter a ordem de convergência numérica do código computacional para problemas
contínuos e a validação deste código para problemas envolvendo corpos imersos ao
combinar a o método das soluções manufaturadas com a metodologia de fronteira imersa.
Na sequência foi solucionado o problema de escoamento ao redor de uma esfera parada, cujos
resultados foram comparados com referencias empíricas, obtendo-se boa aproximação.
Ainda para esse caso foi feita a avalição da norma L2 para as soluções num eriças obtidas
nos pontos lagrangianos verificando a garantia da condição de não-escorregamento e feita
uma análise da inuência dos número de ciclos utilizados no método multi-forçagem. Foi
vericado que a solução numérica obtida depende do número de ciclos o que faz com que
seja necessário se estabelecer um critério de convergência para este método. Um segundo
problema de interação uido-estrutura total foi estudado. Consiste em um pêndulo simples
imerso em um uido que parte de uma dada posição angular inicial e oscila em torno da
sua posição de equilíbrio, até parar. Para esse caso foram feitas análises quantitativas.
Os resultados são preliminares mas coerentes com a física do problema, indicando que a
metodologia é adequada para solução deste tipo de problema. / Mestre em Engenharia Mecânica
|
73 |
Sobre o acoplamento fluido-casca utilizando o método dos elementos finitos / On fluid-shell coupling using the finite element methodRodolfo André Kuche Sanches 30 March 2011 (has links)
Este trabalho consiste no desenvolvimento de ferramentas computacionais para análise não linear geométrica de interação fluido-casca utilizando o Método dos Elementos Finitos (MEF). O algoritmo para dinâmica dos fluidos é explícito e a integração temporal é baseada em linhas características. O código computacional é capaz de simular as equações de Navier-Stokes para escoamentos compressíveis tanto na descrição Euleriana como na descrição Lagrangeana-Euleriana arbitrária (ALE), na qual é possível prescrever movimentos para a malha do fluido. A estrutura é modelada em descrição Lagrangeana total através de uma formulação de MEF para análise dinâmica não linear geométrica de cascas baseada no teorema da mínima energia potencial total escrito em função das posições nodais e vetores generalizados e não em deslocamentos e rotações. Essa característica evita o uso de aproximações de grandes rotações. Dois modelos de acoplamentos são desenvolvidos. O primeiro modelo, ideal para problemas onde a escala de deslocamentos não é muito grande comparada com as dimensões do domínio do fluido, é baseado na descrição ALE e o acoplamento entre as duas diferentes malhas é feito através do mapeamento das posições locais dos nós do contorno do fluido sobre os elementos de casca e vice-versa, evitando a necessidade de coincidência entre os nós da casca e do fluido. A malha do fluido é adaptada dinamicamente usando um procedimento simples baseado nas posições e velocidades nodais da casca. O segundo modelo de acoplamento, ideal para problemas com grande escala de deslocamentos tais como estruturas infláveis, considera a casca imersa na malha do fluido e consiste em um procedimento robusto baseado em curvas de nível da função distância assinalada do contorno, o qual integra o algoritmo Lagrangeano de casca com o Fluido em descrição Euleriana, sem necessidade de movimentação da malha do fluido, onde a representação computacional do fluido se resume a uma malha não estruturada maior ou igual ao domínio inicial do fluido e a interface fluido-casca dentro da malha do fluido é identificada por meio de curvas de nível da função distância assinalada do contorno. Ambos os modelos são testados através de exemplos numéricos mostrando robustez e eficiência. Finalmente, como uma sugestão para o futuro desenvolvimento desta pesquisa, iniciaram-se estudos relativos a funções B-splines. O uso desse tipo de funções deverá resolver problemas de estabilidade relativos a oscilações espúrias devidas ao uso de polinômios de Lagrange para a representação de descontinuidades. / This work consists of the development of computational tools for nonlinear geometric fluid-shell interaction analysis using the Finite Element Method (FEM). The fluid solver is explicit and its time integration based on characteristics. The computational code is able to simulate the Navier-Stokes equations for compressible flows written in the Eulerian description as well as in the arbitrary Lagrangian-Eulerian (ALE) description, enabling movements prescription for the fluid mesh. The structure is modeled in a total Lagrangian description, using a FEM formulation to deal with geometrical nonlinear dynamics of shells based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors, not displacements and rotations, avoiding the use of large rotation approximations. Two partitioned coupling models are developed. The first model, ideal for simulations where the displacements scale is not very large compared to the fluid domain, is based on the ALE description and the coupling between the two different meshes is done by mapping the fluid boundary nodes local positions over the shell elements and vice-versa, avoiding the need for matching fluid and shell nodes. The fluid mesh is adapted using a simple approach based on shell nodal positions and velocities. The second model, ideal for problems with large scales of displacements such as inflatable structures, is based on immersed boundary and consists of a robust level-set based approach that integrates the Lagrangian shell finite and the Eulerian finite element high speed fluid flow solver, with no need for mesh adaptation, where the fluid representation relies on a fixed unstructured mesh larger or equal to the initial fluid domain and the fluid-shell interface inside the fluid mesh is tracked with level sets of a boundary signed distance function. Both models are tested with numerical examples, showing efficiency and robustness. Finally, as a suggestion for future development of this research, we started studies relatives to B-Spline functions. The use of this kind of functions should solve stability problems related to spurious oscillations due to the use of Lagrange polynomials for representing discontinuities.
|
74 |
Interação fluido-estrutura com escoamentos incompressíveis utilizando o método dos elementos finitos / Incompressible fluid-structure interaction using the finite element methodJeferson Wilian Dossa Fernandes 01 March 2016 (has links)
A interação entre fluidos e estruturas caracteriza um problema multi-físico não linear e está presente numa grande variedade de áreas da engenharia. Este trabalho apresenta o desenvolvi mento de ferramentas computacionais com base no Método dos Elementos Finitos (MEF) para a análise de interação fluido-estrutura (IFE) considerando escoamentos com baixas velocidades. Dada a interdisciplinaridade do tema, se faz necessário o estudo em três diferentes assuntos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional, e o problema de acoplamento. No caso da dinâmica das estruturas empregar-se um elemento finito que seja adequado para a simulação de problemas de IFE, que claramente demandam uma análise não linear geométrica, optando-se pelo emprego de uma formulação descrita em posições, a qual evita problemas relativos à aproximação de rotações finitas. Quanto à dinâmica dos fluidos computacional, é empregado um método estável e ao mesmo tempo sensível à movimentação da estrutura, utilizando a descrição Lagrangeana-Euleriana Arbitrária (ALE). Os casos considerados neste trabalho, assim como muitos dos problemas de engenharia, ocorrem com escoamentos em baixas velocidades, implicando na incompressibilidade do fluido, o que demanda, para um método estável, a utilização de elementos que atendam à condição de Ladyzhenskaya-Babuska-Brezzi (LBB). Além disso, é necessário também o emprego de métodos que consigam neutralizar as variações espúrias decorrentes da não-linearidade de possíveis escoamentos com convecção dominante e que surgem com a aplicação do processo clássico de Galerkin. Para superar esse problema, é aplicado o método Streamline-Upwind/Petrov-Galerkin (SUPG), que adiciona difusividade artificial na direção do escoamento, controlando a amplitude dos termos convectivos. No que se refere ao acoplamento fluido-casca, buscam-se modularidade e versatilidade adotando-se o modelo particionado. O modelo de acoplamento implementado garante ainda a utilização de malhas do fluido e da estrutura sem a necessidade de coincidência de nós. / Interaction between fluids and structures characterizes a nonlinear multi-physics problem presente in a wide range of engineering fields. This works presets the development of computational tools based on finite element method (FEM) for fluid-structure interaction (FSI) analysis considering low speed flows (incompressible), as a great part of the engineering problems. Given the topic multidisciplinary nature, it is necessary to study three different subjects: the computational structural dynamics, the computational fluid mechanics and the coupling problem. Regarding structural mechanics, we seek to employ a finite element adequate to FSI simulation, what clearly demands a geometric nonlinear analysis. We chose to employ shell elements with formulation in terms of positions, which avoids problems related to finite rotations approximations. Concerning computational fluid dynamics, we employ a stable method, at same time sensible o structural movements, which is written in the arbitrary Lagrangian-Eulerian (ALE) description. The flow incompressibility demands, for a stable method, the use of elements according to the Ladyzhenskaya-Bbuska-Brezzi (LBB) condition. It is also necessary to employ methods able to neutralize the spurious variations that appears from convection dominated flows when applying the standard Galerking method. In order to overcome this problem, we apply the Streamline-Upwind/Petrov-Galerkin (SUPG) method, which adds artificial diffusivity to the streamline direction, controlling spurious variations. Considering the fluid-shell coupling, we seek modularity and versatility, adopting the partitioned model. The developed coupling model ensure the use of fluid and structure meshes with no need for matching nodes.
|
75 |
On lattice Boltzmann method for solving fluid-structure interaction problemsValdez, Andrés Ricardo 18 September 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-11T14:54:52Z
No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Rejected by Fabíola Rubim (fabiola.rubim@ufjf.edu.br), reason: on 2018-01-12T11:05:10Z (GMT) / Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-12T11:46:32Z
No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Rejected by Adriana Oliveira (adriana.oliveira@ufjf.edu.br), reason: Favor corrigir: Membro da banca: Filho, José Karam on 2018-01-23T14:01:35Z (GMT) / Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-23T14:06:58Z
No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-23T14:22:22Z (GMT) No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Made available in DSpace on 2018-01-23T14:22:22Z (GMT). No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5)
Previous issue date: 2017-09-18 / Neste trabalho são apresentados aspectos de modelagem computacional para o estudo de Interação Fluido-Estrutura (FSI). Numericamente, o Método de Lattice Boltzmann (LBM) é usado para resolver a mecânica dos fluidos, em particular as equações de Navier-Stokes incompressíveis. Neste contexto, são abordados problemas de escoamentos complexos, caracterizado pela presença de obstáculos. A imposição das restrições na interface fluido-sólido é feita utilizando princípios variacionais, empregando o Princípio de Balanço de Potências Virtuais (PVPB) para obter as equações de Euler-Lagrange. Esta metodologia permite determinar as dependências entre carregamentos cinematicamente compatíveis e o estado mecânico adotado. Neste sentido, as condições de interface fluido-sólido são abordadas pelo Método de Fronteira Imersa (IBM) visando técnicas computacionais de baixo custo. A metodologia IBM trata o equilíbrio das equações na interface fluido-sólido através da interpolação entre os nós Lagrangianos (sólidos) e os nós Eulerianos (fluidos). Neste contexto, uma modificação desta estratégia que fornece soluções mais precisas é estudada. Para mostrar as capacidades do acoplamento LBM-IBM são apresentados vários experimentos computacionais que demonstram grande fidelidade entre as soluções obtidas e as soluções disponíveis na literatura. / This work presents computational modeling aspects for studying Fluid-Structure Interaction (FSI). The Lattice Boltzmann Method (LBM) is employed to solve the fluid mechanics considering the incompressible Navier-Stokes equations. The flows studied are complex due to the presence of arbitrary shaped obstacles. The obstacles alters the bulk flow adding complexity to the analysis. In this work the Euler-Lagrange equations are obtained employing the Principle of Virtual Power Balance (PVPB). Consequently, the functional dependencies between the mechanical state and every kinematic compatible loadings are established employing variational arguments. This modeling technique allows to study the fluid-solid boundary constraint. In this context the fluid-solid interface is handled employing the Immersed Boundary Method (IBM). The IBM deals with the fluid-solid interface equilibrium equations performing an interpolation of forces between Lagrangian nodes (solid domain) and Eulerian Lattice grid (fluid domain). In this work a different version of this methodology is studied that allows to obtain more accurate solutions. To show the capabilities of the implemented LBM-IBM solver several experiments are done showing the agreement with the benchmarks results available in literature.
|
76 |
Instabilidade dinâmica de cascas cilíndricas laminadas submetidas a fluido e temperatura / Dynamic instability of cylindrical shells with fluid and temperature dependencesMartins, Vitor Escher 24 June 2014 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2015-03-27T12:06:51Z
No. of bitstreams: 2
Dissertação - Vitor Escher Martins - 2014.pdf: 13588446 bytes, checksum: 9cceb42b5d24095bc392dc37f17c9386 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-27T15:28:00Z (GMT) No. of bitstreams: 2
Dissertação - Vitor Escher Martins - 2014.pdf: 13588446 bytes, checksum: 9cceb42b5d24095bc392dc37f17c9386 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-27T15:28:00Z (GMT). No. of bitstreams: 2
Dissertação - Vitor Escher Martins - 2014.pdf: 13588446 bytes, checksum: 9cceb42b5d24095bc392dc37f17c9386 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-06-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Over the years, fiber-reinforced composite laminated shells have been widely used as structural components in several engineering areas and industrial applications. These structures can been subjected to extreme working conditions, either by a fluid structure interaction or even by both dynamic external load and thermal load that provides additional compressive stresses acting along the shell. In the present work, the nonlinear dynamic behavior and stability of fluid-filled laminated cylindrical shells under both thermal and lateral loads is investigated. To model the shell the nonlinear Amabili-Reddy Higher-Order Shear Deformation Theory is applied, the hydrodynamic pressure of the fluid is model by the potential flow theory and a linear temperature distribution is proposed along the thickness of the shells. Classical shells theories, which neglect shear deformation and rotary inertia, give inaccurate analysis results for moderately thick laminated shells. Due to this limitation, higher-order shear deformation theories can represent better the kinematics behavior and can yield more accurate interlaminar stress.To discretize the shell a 23 d.o.f. displacement field is used containing the axial, circumferential, lateral displacements, rotations as well as the coefficients to consider the shear effect. The Ritz method is applied in order to obtain a set of nonlinear ordinary differential equations of motions, which are in turn solved by the Runge-Kutta method. The obtained resonance curves and bifurcation diagrams show the great influence of both laminated material and the temperature on the nonlinear behavior of the shells. / Ao longo dos anos cascas cilíndricas laminadas reforçadas com fibras têm sido amplamente utilizadas como componentes estruturais em diversas áreas da engenharia e aplicações industriais. Durante sua vida operacional, essas estruturas são constantemente submetidas às extremas condições de trabalho, seja em função da interação fluido- estrutura, cargas externas dinâmicas ou mesmo por cargas térmicas que produzem tensões adicionais de compressão sobre a superfície da casca. Neste trabalho será investigado o comportamento dinâmico não linear de cascas cilíndricas laminadas com a presença de um meio fluido em repouso no interior da casca, além de se estudar a influência de esforços laterais dinâmicos solicitantes, juntamente com a variações de temperatura. A teoria de Amabili-Reddy de deformação por cisalhamento de ordem superior é utilizada para modelar o comportamento mecânico dos esforços e deformações da casca, garantindo assim, uma melhor distribuição das tensões interlaminares, ou seja, ao longo de sua direção radial. A análise é realizada para cascas simplesmente apoiadas, em que são consideradas três expansões de deslocamento, respectivamente nas direções longitudinal, circunferencial e radial, além de duas expansões para as rotações da linha neutra nos planos xz z, discretizando o problema em 23 graus de liberdade. O método de Ritz é aplicado para a obtenção do sistema de equações de movimento não linear (EDO), além do método de Runge-Kutta de 4º Ordem e o método de Força Bruta que são utilizados para se investigar o comportamento dinâmico das análises em questão.
|
77 |
Análise numérica de barras gerais 3D sob efeitos mecânicos de explosões e ondas de choque / Numerical analysis of general 3D bars under mechanical effects of explosions and shock wavesPardo Suárez, Sergio Andrés 16 December 2016 (has links)
O presente trabalho consiste no uso do Método dos Elementos Finitos (MEF) para a análise de interação fluido-estruturas de barras com foco em problemas transientes envolvendo explosões ou outras ações com propagação de ondas de choque. Para isso é necessário o estudo de três diferentes aspectos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional e o problema do acoplamento. No caso da dinâmica das estruturas computacional deve-se identificar em função da cinemática de deformações, quais são os requisitos para que um elemento seja adequado para analisar tais problemas, tendo em vista que a formulação deve admitir grandes deslocamentos. Para evitar problemas relacionados com aproximações de rotações finitas, opta-se por empregar uma formulação descrita em termos de posições e que leva em consideração os efeitos de empenamento da seção transversal. No caso da dinâmica dos fluidos computacional, busca-se uma formulação para escoamentos compressíveis que seja estável e ao mesmo tempo sensível ao movimento da estrutura, sendo empregado um algoritmo de integração temporal explícito baseado em características com as equações governantes descritas na forma Lagrangeana-Euleriana Arbitrária (ALE). No que se refere ao acoplamento, busca-se modularidade e versatilidade, empregando-se um modelo particionado fraco (explícito) de acoplamento e técnicas de transferência das condições de contorno (Dirichlet-Neummann), sendo estudados os efeitos de utilizar transferência bidirecional ou unidirecional dessas condições de contorno. / This work consists in the use of the Finite Element Method (FEM) for numerical analysis of fluid-bar structures, focusing on transient problems involving explosions or other actions with shock waves propagation. For this purpose, one needs to study three different aspects: the computational structural dynamics, the computational fluid dynamics and the coupling problem. Regarding computational structural dynamics, one need firstly to identify the requirements for an element to be adequate to analyze such problems, taking into account the fact that such element should admit large displacements. In order to avoid problems related to finite rotation approximations and to give a realist representation of a 3D bar structure, we chose a formulation defined in terms of positions and that considers the cross-section warping effects. Regarding computational fluid dynamics, we seek for a stable formulation for compressible flows, and at same time, sensitive to the movement of the structure, leading to an explicit time integration algorithm based on characteristics with governing equations described in the Arbitrary Lagrangian-Eulerian (ALE) form. Regarding to coupling, we chose to use a weak (explicit) partitioning coupling model in order to ensure modularity and versatility. The developed coupling scheme is bases on boundary conditions transfer techniques (Dirichlet-Neummann), and we study the effects of using bidirectional or unidirectional boundary conditions transfers.
|
78 |
Análise numérica de barras gerais 3D sob efeitos mecânicos de explosões e ondas de choque / Numerical analysis of general 3D bars under mechanical effects of explosions and shock wavesSergio Andrés Pardo Suárez 16 December 2016 (has links)
O presente trabalho consiste no uso do Método dos Elementos Finitos (MEF) para a análise de interação fluido-estruturas de barras com foco em problemas transientes envolvendo explosões ou outras ações com propagação de ondas de choque. Para isso é necessário o estudo de três diferentes aspectos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional e o problema do acoplamento. No caso da dinâmica das estruturas computacional deve-se identificar em função da cinemática de deformações, quais são os requisitos para que um elemento seja adequado para analisar tais problemas, tendo em vista que a formulação deve admitir grandes deslocamentos. Para evitar problemas relacionados com aproximações de rotações finitas, opta-se por empregar uma formulação descrita em termos de posições e que leva em consideração os efeitos de empenamento da seção transversal. No caso da dinâmica dos fluidos computacional, busca-se uma formulação para escoamentos compressíveis que seja estável e ao mesmo tempo sensível ao movimento da estrutura, sendo empregado um algoritmo de integração temporal explícito baseado em características com as equações governantes descritas na forma Lagrangeana-Euleriana Arbitrária (ALE). No que se refere ao acoplamento, busca-se modularidade e versatilidade, empregando-se um modelo particionado fraco (explícito) de acoplamento e técnicas de transferência das condições de contorno (Dirichlet-Neummann), sendo estudados os efeitos de utilizar transferência bidirecional ou unidirecional dessas condições de contorno. / This work consists in the use of the Finite Element Method (FEM) for numerical analysis of fluid-bar structures, focusing on transient problems involving explosions or other actions with shock waves propagation. For this purpose, one needs to study three different aspects: the computational structural dynamics, the computational fluid dynamics and the coupling problem. Regarding computational structural dynamics, one need firstly to identify the requirements for an element to be adequate to analyze such problems, taking into account the fact that such element should admit large displacements. In order to avoid problems related to finite rotation approximations and to give a realist representation of a 3D bar structure, we chose a formulation defined in terms of positions and that considers the cross-section warping effects. Regarding computational fluid dynamics, we seek for a stable formulation for compressible flows, and at same time, sensitive to the movement of the structure, leading to an explicit time integration algorithm based on characteristics with governing equations described in the Arbitrary Lagrangian-Eulerian (ALE) form. Regarding to coupling, we chose to use a weak (explicit) partitioning coupling model in order to ensure modularity and versatility. The developed coupling scheme is bases on boundary conditions transfer techniques (Dirichlet-Neummann), and we study the effects of using bidirectional or unidirectional boundary conditions transfers.
|
Page generated in 0.0374 seconds