• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de técnicas de separação cega de fontes para remoção de artefatos em interfaces cérebro-máquina

Almeida, Cristiano Camilo dos Santos de January 2013 (has links)
Orientador: Ricardo Suyama / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Engenharia da Informação, 2013
2

Generalização da técnica de correlação canônica para aplicações em interface cérebro-máquina /

Brogin, João Angelo Ferres. January 2018 (has links)
Orientador: Douglas Domingues Bueno / Resumo: A busca por uma melhor compreensão das regiões do cérebro e suas funções nas ações humanas tem sido uma tarefa árdua, porém muito útil, principalmente para aplicações da engenharia de interface cérebro-máquina (ICM), bem como para o auxílio a diagnósticos médicos a partir de sinais obtidos dos pacientes em avaliação. No contexto do presente trabalho, destacam-se os trabalhos de interface cérebro-máquina (ICM) pela abrangência no envolvimento de técnicas, métodos e ferramentas comumente estudadas nos cursos de engenharia. Em particular, análises envolvendo técnicas de processamento de sinais de eletroencefalograma (EEG) têm se mostrado de significativa importância para o desenvolvimento dessa área. Uma abordagem amplamente utilizada nesse contexto é a ICM usando Potenciais Visuais Evocados de Estados Estacionários (SSVEP, do inglês Steady-State Visual Evoked Potentials), que, de forma geral, são sinais caracterizados pela resposta evocada do cérebro a estímulos visuais modulados em uma frequência específica. Assim, este trabalho tem o objetivo de propor uma generalização do coeficiente de correlação, conceito-base da análise de correlação canônica (CCA), técnica que tem se mostrado robusta e eficiente no reconhecimento de padrões, especialmente no caso dos SSVEP, e detalhar seu comportamento em função dos parâmetros relevantes para se estabelecer melhores práticas de uso em aplicações de ICM, incluindo fatores fisiológicos, técnicos e operacionais. / Abstract: The search for a better understanding of the brain's anatomy and its functions on human actions has been a harsh yet very useful task, especially for brain-computer interface engineering applications, as well as for medical diagnosis using signals from patients. In the context of this work, brain-computer interface (BCI) applications are highlighted due to their compreehensiveness related to techniques, methods and tools commonly studied in engineering. In particular, analyses involving eletroencephalogram (EEG) signals processing have proven to be of great significance for developing this field of study. A widely used approach is Steady State Visual Evoked Potentials (SSVEP) based BCI, which, in general, are signals characterized by the brain’s evoked response to visual stimuli modulated at a certain frequency. This work aims thus to propose a generalization of the correlation coefficient, which entails Canonical Correlation Analysis (CCA), a technique that has presented robustness and efficiency for pattern recognition, especially in SSVEP-based BCIs, and describe its behavior under relevant varying parameters to stablish better use practices in BCI applications, comprising physiological, technical and operational factors. / Mestre
3

SSVEP-EEG signal pattern recognition system for real-time brain-computer interfaces applications /

Giovanini, Renato de Macedo. January 2017 (has links)
Orientador: Aparecido Augusto de Carvalho / Resumo: There are, nowadays, about 110 million people in the world who live with some type of severe motor disability. Specifically in Brazil, about 2.2% of the population are estimated to live with a condition of difficult locomotion. Aiming to help these people, a vast variety of devices, techniques and services are currently being developed. Among those, one of the most complex and challenging techniques is the study and development of Brain-Computer Interfaces (BCIs). BCIs are systems that allow the user to communicate with the external world controlling devices without the use of muscles or peripheral nerves, using only his decoded brain activity. To achieve this, there is a need to develop robust pattern recognition systems, that must be able to detect the user’s intention through electroencephalography (EEG) signals and activate the corresponding output with reliable accuracy and within the shortest possible processing time. In this work, different EEG signal processing techniques were studied, and it is presented the development of a EEG under visual stimulation (Steady-State Visual Evoked Potentials - SSVEP) pattern recognition system. Using only Open Source tools and Python programming language, modules to manage datasets, reduce noise, extract features and perform classification of EEG signals were developed, and a comparative study of different techniques was performed, using filter banks and Discrete Wavelet Transforms (DWT) as feature extraction approach... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
4

SSVEP-EEG signal pattern recognition system for real-time brain-computer interfaces applications / Sistema de reconhecimento de padrões de sinais SSVEP-EEG para aplicações em interfaces cérebro-computador

Giovanini, Renato de Macedo [UNESP] 18 August 2017 (has links)
Submitted by Renato de Macedo Giovanini null (renato81243@aluno.feis.unesp.br) on 2017-09-25T14:52:54Z No. of bitstreams: 1 dissertacao_renato_de_macedo_giovanini_2017_final.pdf: 10453769 bytes, checksum: 7f7e2415a0912fae282affadea2685b8 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-27T20:24:55Z (GMT) No. of bitstreams: 1 giovanini_rm_me_ilha.pdf: 10453769 bytes, checksum: 7f7e2415a0912fae282affadea2685b8 (MD5) / Made available in DSpace on 2017-09-27T20:24:55Z (GMT). No. of bitstreams: 1 giovanini_rm_me_ilha.pdf: 10453769 bytes, checksum: 7f7e2415a0912fae282affadea2685b8 (MD5) Previous issue date: 2017-08-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / There are, nowadays, about 110 million people in the world who live with some type of severe motor disability. Specifically in Brazil, about 2.2% of the population are estimated to live with a condition of difficult locomotion. Aiming to help these people, a vast variety of devices, techniques and services are currently being developed. Among those, one of the most complex and challenging techniques is the study and development of Brain-Computer Interfaces (BCIs). BCIs are systems that allow the user to communicate with the external world controlling devices without the use of muscles or peripheral nerves, using only his decoded brain activity. To achieve this, there is a need to develop robust pattern recognition systems, that must be able to detect the user’s intention through electroencephalography (EEG) signals and activate the corresponding output with reliable accuracy and within the shortest possible processing time. In this work, different EEG signal processing techniques were studied, and it is presented the development of a EEG under visual stimulation (Steady-State Visual Evoked Potentials - SSVEP) pattern recognition system. Using only Open Source tools and Python programming language, modules to manage datasets, reduce noise, extract features and perform classification of EEG signals were developed, and a comparative study of different techniques was performed, using filter banks and Discrete Wavelet Transforms (DWT) as feature extraction approaches, and the classifiers K-Nearest Neighbors, Multilayer Perceptron and Random Forests. Using DWT approach with Random Forest and Multilayer Perceptron classifiers, high accuracy rates up to 92 % were achieved in deeper decomposition levels. Then, the small-size microcomputer Raspberry Pi was used to perform time processing evaluation, obtaining short processing times for every classifiers. This work is a preliminary study of BCIs at the Laboratório de Instrumentação e Engenharia Biomédica, and, in the future, the system here presented may be part of a complete SSVEP-BCI system. / Existem, atualmente, cerca de 110 milhões de pessoas no mundo que vivem com algum tipo de deficiência motora severa. Especificamente no Brasil, é estimado que cerca de 2.2% da população conviva com alguma condição que dificulte a locomoção. Com o intuito de auxiliar tais pessoas, uma grande variedade de dispositivos, técnicas e serviços são atualmente desenvolvidos. Dentre elas, uma das técnicas mais complexas e desafiadoras é o estudo e o desenvolvimento de Interfaces Cérebro-Computador (ICMs). As ICMs são sistemas que permitem ao usuário comunicar-se com o mundo externo, controlando dispositivos sem o uso de músculos ou nervos periféricos, utilizando apenas sua atividade cerebral decodificada. Para alcançar isso, existe a necessidade de desenvolvimento de sistemas robustos de reconhecimento de padrões, que devem ser capazes de detectar as intenções do usuáro através dos sinais de eletroencefalografia (EEG) e ativar a saída correspondente com acurácia confiável e o menor tempo de processamento possível. Nesse trabalho foi realizado um estudo de diferentes técnicas de processamento de sinais de EEG, e o desenvolvimento de um sistema de reconhecimento de padrões de sinais de EEG sob estimulação visual (Potenciais Evocados Visuais de Regime Permanente - PEVRP). Utilizando apenas técnicas de código aberto e a linguagem Python de programação, foram desenvolvidos módulos para realizar o gerenciamento de datasets, redução de ruído, extração de características e classificação de sinais de EEG, e um estudo comparativo de diferentes técnicas foi realizado, utilizando-se bancos de filtros e a Transformada Wavelet Discreta (DWT) como abordagens de extração de características, e os classificadores K-Nearest Neighbors, Perceptron Multicamadas e Random Forests. Utilizando-se a DWT juntamente com Random Forests e Perceptron Multicamadas, altas taxas de acurácia de até 92 % foram obtidas nos níveis mais profundos de decomposição. Então, o computador Raspberry Pi, de pequenas dimensões, foi utilizado para realizar a avaliação do tempo de processamento, obtendo um baixo tempo de processamento para todos os classificadores. Este trabalho é um estudo preliminar em ICMs no Laboratório de Instrumentação e Engenharia Biomédica e, no futuro, pode ser parte de um sistema ICM completo.
5

Detecção de potenciais evocados P300 para ativação de uma interface cérebro-máquina. / Brain-computer interface based on P300 event-related potential detection.

Antônio Carlos Bastos de Godói 20 July 2010 (has links)
Interfaces cérebro-computador ou Interfaces cérebro-máquina (BCIs/BMIs do inglês Brain-computer interface/Brain-machine interface) são dispositivos que permitem ao usuário interagir com o ambiente ao seu redor sem que seja necessário ativar seus músculos esqueléticos. Estes dispositivos são de extrema valia para indivíduos portadores de deficiências motoras. Esta dissertação ambiciona revisar a literatura acerca de BMIs e expor diferentes técnicas de pré-processamento, extração de características e classificação de sinais neurofisiológicos. Em particular, uma maior ênfase será dada à Máquina de vetor de suporte (SVM do inglês Support-Vector machine), método de classificação baseado no princípio da minimização do risco estrutural. Será apresentado um estudo de caso, que ilustra o funcionamento de uma BMI, a qual permite ao usuário escolher um dentre seis objetos mostrados em uma tela de computador. Esta capacidade da BMI é conseqüência da implementação, através da SVM de um sistema capaz de detectar o potencial evocado P300 nos sinais de eletroencefalograma (EEG). A simulação será realizada em Matlab usando, como sinais de entrada, amostras de EEG de quatro indivíduos saudáveis e quatro deficientes. A análise estatística mostrou que o bom desempenho obtido pela BMI (80,73% de acerto em média) foi promovido pela aplicação da média coerente aos sinais, o que melhorou a relação sinal-ruído do EEG. / Brain-computer interfaces (BCIs) or Brain-machine interfaces (BMIs) technology provide users with the ability to communicate and control their environment without employing normal output pathway of peripheral nerves and muscles. This technology can be especially valuable for highly paralyzed patients. This thesis reviews BMI research, techniques for preprocessing, feature extracting and classifying neurophysiological signals. In particular, emphasis will be given to Support-Vector Machine (SVM), a classification technique, which is based on structural risk minimization. Additionally, a case study will illustrate the working principles of a BMI which analyzes electroencephalographic signals in the time domain as means to decide which one of the six images shown on a computer screen the user chose. The images were selected according to a scenario where users can control six electrical appliances via a BMI system. This was done by exploiting the Support-Vector Machine ability to recognize a specific EEG pattern (the so-called P300). The study was conducted offline within the Matlab environment and used EEG datasets recorded from four disabled and four able-bodied subjects. A statistical survey of the results has shown that the good performance attained (80,73%) was due to signal averaging method, which enhanced EEG signal-to-noise ratio.
6

Detecção de potenciais evocados P300 para ativação de uma interface cérebro-máquina. / Brain-computer interface based on P300 event-related potential detection.

Godói, Antônio Carlos Bastos de 20 July 2010 (has links)
Interfaces cérebro-computador ou Interfaces cérebro-máquina (BCIs/BMIs do inglês Brain-computer interface/Brain-machine interface) são dispositivos que permitem ao usuário interagir com o ambiente ao seu redor sem que seja necessário ativar seus músculos esqueléticos. Estes dispositivos são de extrema valia para indivíduos portadores de deficiências motoras. Esta dissertação ambiciona revisar a literatura acerca de BMIs e expor diferentes técnicas de pré-processamento, extração de características e classificação de sinais neurofisiológicos. Em particular, uma maior ênfase será dada à Máquina de vetor de suporte (SVM do inglês Support-Vector machine), método de classificação baseado no princípio da minimização do risco estrutural. Será apresentado um estudo de caso, que ilustra o funcionamento de uma BMI, a qual permite ao usuário escolher um dentre seis objetos mostrados em uma tela de computador. Esta capacidade da BMI é conseqüência da implementação, através da SVM de um sistema capaz de detectar o potencial evocado P300 nos sinais de eletroencefalograma (EEG). A simulação será realizada em Matlab usando, como sinais de entrada, amostras de EEG de quatro indivíduos saudáveis e quatro deficientes. A análise estatística mostrou que o bom desempenho obtido pela BMI (80,73% de acerto em média) foi promovido pela aplicação da média coerente aos sinais, o que melhorou a relação sinal-ruído do EEG. / Brain-computer interfaces (BCIs) or Brain-machine interfaces (BMIs) technology provide users with the ability to communicate and control their environment without employing normal output pathway of peripheral nerves and muscles. This technology can be especially valuable for highly paralyzed patients. This thesis reviews BMI research, techniques for preprocessing, feature extracting and classifying neurophysiological signals. In particular, emphasis will be given to Support-Vector Machine (SVM), a classification technique, which is based on structural risk minimization. Additionally, a case study will illustrate the working principles of a BMI which analyzes electroencephalographic signals in the time domain as means to decide which one of the six images shown on a computer screen the user chose. The images were selected according to a scenario where users can control six electrical appliances via a BMI system. This was done by exploiting the Support-Vector Machine ability to recognize a specific EEG pattern (the so-called P300). The study was conducted offline within the Matlab environment and used EEG datasets recorded from four disabled and four able-bodied subjects. A statistical survey of the results has shown that the good performance attained (80,73%) was due to signal averaging method, which enhanced EEG signal-to-noise ratio.

Page generated in 0.0264 seconds