• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 583
  • 350
  • 189
  • 67
  • 33
  • 17
  • 16
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1545
  • 417
  • 323
  • 204
  • 179
  • 156
  • 154
  • 150
  • 120
  • 119
  • 115
  • 108
  • 105
  • 103
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Endurance Materials for Hydrogen Sulfide Splitting in Electrolytic Cell

Mbah, Jonathan Chinwendu 05 November 2008 (has links)
This study describes the development of a novel thin membrane exchange assembly (MEA) from a solid acid material, cesium hydrogen sulfate (CsHSO4), and from a composite anode electrocatalyst for electrolytic splitting of (100 %) H2S feed content gas operating at 135 kPa and 150 °C. A new class of anode electrocatalyst with the general composition, RuO2/CoS2, and an improved proton conductor, CsHSO4, have shown great stability and desired properties at typical operating conditions. This configuration demonstrated stable electrochemical operation for 24 h with a (100 %) H2S fuel stream at 423 K. This same system showed a maximum current density of (19 mA/cm²) at 900 mV. The performance of this new anode electrocatalyst when compared to that of Pt black investigated in a previous study showed an overall superiority in application. We have achieved a 30 % reduction in the overall system performance by fabricating a thin (200 µm) CsHSO4 electrolyte, which reduced the whole MEA thickness from 2.3 mm to 500 µm. The result of permeability measurements proved that this thin solid electrolyte is impermeable to H2S gas and physical integrity was preserved throughout the experimental period. Further resistance losses were compensated by using a high energy planetary milling system to enhance the ionic conductivity of CsHSO4. The difference in stability and electrochemical performance of these cells compared to that of Pt anode based systems is directly attributable to the anode materials developed in this project. Factorial experiments were used to characterize the effect of controllable process variables (electrolyte thickness, time, age of the electrolyte) on the cell current density and interfacial polarization resistances. As expected, cell current density and interfacial polarization resistances were a function of electrolyte thickness and age. Nevertheless, the effect of electrolyte thickness has a more prominent effect on the measured parameters. In addition, these experiments were used to identify regions of optimum system performance. Tafel plots were constructed to investigate the kinetic behavior of various anode based electrocatalysts. Exchange current densities, which are directly a measure of the electrochemical reaction, increased with RuO2/CoS2-based anodes. These experiments also suggested that high levels of feed utilization were possible using these materials. This was an impressive result considering the drastic improvement in electrochemical performance, current density, and sulfur tolerance compared to the other anode configurations.
462

Soil Aggregates: The mechanistic link to increased dissolved organic carbon in surface waters?

Cincotta, Malayika 01 January 2018 (has links)
Dissolved organic carbon (DOC) plays an important role in the global carbon (C) cycle because increases in aqueous C potentially contribute to rising atmospheric CO2 levels. Over the past few decades, headwater streams of the northern hemisphere have shown increased amounts of DOC coinciding with decreased acid deposition. Although the issue is widely discussed in the literature, a mechanistic link between precipitation composition and stream water DOC has not yet been proposed. In this study, the breakup of soil aggregates is hypothesized as the mechanistic link between reduced acid deposition and DOC increases in surface waters. Specific hypotheses state that soil aggregate dispersion (and the ensuing release of DOC from these aggregates) is driven by a decrease in soil solution ionic strength (IS, decreasing the tendency of flocculation) as well as a shift from divalent to monovalent cations (reducing the propensity for cation bridging) in soil solution. These hypotheses were tested on soil samples collected from several riparian zone and hillslope positions along three flagged transects in the acid-impacted Sleepers River Research Watershed in northeastern Vermont. To determine soil C content by landscape position, samples from transects spanning hilltop to hillslope and riparian area, as well as replicated hillslope and riparian samples (n=40) were analyzed. Aqueous soil extracts simulate the flushing of soils during hydrologic events (e.g. rain or snowmelt) and were used to test the effect of soil solution chemistry on DOC release. Extracts were prepared with solutions of varying IS (0-0.005M) and composition (CaCl2 and NaCl) on replicated soil samples (n=54) and changes in DOC release and aggregate size were monitored. As IS of the extraction solution increased, the amount of DOC in solution decreased, and aggregate size increased. This was presumably due to cations bridging and diffuse double layer effects. This effect was reversed in low ionic strength solutions where DOC release was significantly higher and average aggregate size was smaller. While extraction solution controlled the amount of C liberated, landscape position impacted the quality, but not quantity, of released DOC. This study is the first to propose a mechanistic link observed changes in DOC in surface waters and recovery from acidification and provides initial experimental evidence that soil aggregates indeed play a role in the generation of DOC.
463

Video-microscopic observation of ionic liquid/alcohol interface and the corresponding molecular simulation study

January 2013 (has links)
This research is aimed at studying the ionic liquid/n-pentanol interface via video-microscopy and molecular dynamic simulations. Understanding the interfacial phenomena and interfacial transport between ionic liquids and other liquids is of interest to the development and application of ionic liquids in a number of areas. One such area is the biphasic hydroformylation of alkenes to obtain alcohol and aldehyde, in which case ionic liquid is the reaction medium where a catalyst resides. The dissolution of an ionic liquid into an alcohol was studied by microscopically observing and measuring the shrinking of a micropipette-produced droplet in real time. Although microscopic investigation of droplet dissolution has been studied before, no attempt had been made to measure the di↵usion coefficient D of the droplet species in the surrounding medium. A key finding of this work is that the Epstein-Plesset mathematical model, which describes the dissolution of a droplet/bubble in another fluid medium, can be used to measure D. Other experimental studies of the ionic liquid/alcohol system include electrical conductivity and UV-visible spectroscopy measurements of solutions of 1-hexyl-3-methylimidazolium tetrafluoroborate in n-pentanol. Those experiments were done in order to understand the molecular state of the particular ionic liquid in n-pentanol, as well as obtaining the dissociation constant K of such weak electrolyte solution. The experimental results provide an entry to the assessment of ionic liquid interaction with n-pentanol at molecular scale. Subsequently, molecular dynamics simulation was implemented for the investigation of such interaction. The computation started with simulation of the bulk phase of 1-butyl-3-methylimidazolium tetrafluoroborate, an affine ionic liquid on which molecular simulations had already been reported. A generalized probability based on Fuoss approximation for the closest ion to a distinguished countercharge ion was developed. In addition to 1-butyl-3- methylimidazolium tetrafluoroborate, the generalization was tested also on tetraethyl ammonium tetrafluoroborate in propylene carbonate from low to high concentrations, and on the corresponding primitive model. Such generalization helps us understand paring of ions in electrolyte solution, especially for elevated concentrations. Two cases of 1-hexyl-3-methylimidazolium tetrafluoroborate ionic liquid/npentanol system were studied, which are (i) liquid-liquid interface; and (ii) solution of the former in the latter. Computation of biphasic interface revealed interaction at the liquid-liquid junction, e.g., the transport of molecules from one phase to another, and lead to evaluation of di↵usion coefficient that has good agreement with experimental measurement. The simulation of dilute electrolyte solution, i.e., an ionic liquid pair in n-pentanol, gives free energy change as a function of ion separation distance. The dissociation constant K was evaluated and found to be closed to experimental value that was obtained from solution conductivity measurement. The investigation of ion dynamics, especially the memory function transformed from velocity autocorrelation function, lead to the finding of dielectric friction in the system. Furthermore, precise evaluation of D gives satisfied agreement with experimental measurement from micropipette technique. / acase@tulane.edu
464

Non-Invasive Manipulation of Membrane Potential in Intact Living Cells

Dando, Robin 31 August 2007 (has links)
All living cells contain the electrogenic enzyme Na/K ATPase, whose function is to pump ions against the electrochemical gradient, in order to provide potential energy which is later used for cellular processes such as action potentials, muscle contraction and facilitated transport. Using a technique developed in our lab, exploiting the molecule's voltage dependence, it is possible to increase this pump function by many folds. Optical measurement of the membrane potential of living cells was made using a potentiommetric dye, with successful manipulation of the ionic concentration and membrane potential reported. Additional supporting results are presented, along with extension of this field to the study of cardiac Myocytes, representing a progression to Mammalian cells, with advantages to future clinical research evident. Successful manipulation of membrane potential was also achieved using cells in a two dimensional tissue matrix, which more closely approximates the living system, and hence is closer to an eventual clinical application. Also, expedited recovery from electrical injury was recorded, demonstrating a possible therapeutic application of the technique.
465

An NMR diffusion study of the transport properties in novel electrolytes

Every, Hayley A. (Hayley Ann), 1973- January 2001 (has links)
Abstract not available
466

Room temperature ionic liquids as electrolytes for use with the lithium metal electrode

Howlett, Patrick C. January 2004 (has links)
Abstract not available
467

Structural analysis of low melting organic salts an approach to ionic liquid design

Dean, Pamela Mary January 2009 (has links)
Ionic liquid forming compounds often display low melting points (a lack of crystallisation at ambient temperature and pressure) due to decreased lattice energies in the crystalline state. The degree of anion-cation contact with respect to the type, strength and number of interactions is a major factor determining the lattice energies, melting point and general behaviour of ionic liquid forming salts. Intermolecular interactions between the anion and cation and the conformational states of each component of the salt are of interest since distinctive properties ascribed to ionic liquids are determined to a significant extent by these interactions. The direct insight into the spatial relationship between cation and anion provided by the analysis of crystal structures provides a basis from which features of the ionic liquid can be generally understood, since the short range order and interactions of related, non-crystalline compounds may be similar to those of the crystalline form. However, it is difficult to predict whether a particular ionic pair will produce a liquid at room temperature, due to numerous possible combinations of cations and anions and the subtleties of their interactions. Crystal engineering is the ability to assemble molecular or ionic components into the desired crystalline architecture by engineering a target network of supramolecular interactions known as synthons. In this investigation the problem of ionic liquid design is addressed using the concepts of crystal engineering in an inverse sense, the so-called anti crystal-engineering approach. A topical area in which the anti crystal-engineering concept may be of some value is that of Ionic Liquid Phases of Pharmaceutically Active Ions (Active Ionic Liquids). Thus, by using the knowledge gained of the intermolecular interactions, packing and ionic conformation which occur within ‘traditional’ ionic liquids, combined with the knowledge of which functional group combinations yield supramolecular synthons resulting in crystalline subjects, and the subsequent prevention thereof (anti crystal-engineering), appropriate ions shall be selected which may result in ionic liquid formation. The intermolecular interactions of a series of: • crystallised bis(trifluoromethanesulfonyl)amide (NTf2) and bis(methanesulfonyl)amide (NMes2) ionic liquids, • low melting N-alkyl-2-methyl-3-benzylimidazolium iodide salts with a range of alkyl chain lengths, from n=1 to 6 and including both n-butyl and s-butyl chains, • 1-methyl-1-propylpyrrolidinium chloride and, • a number of low melting salts containing trihalide and monohalide ions, in combination with typical IL organic cations namely, 1-ethyl-3-methylimidazolium, 1-ethyl-1-methylpyrrolidinium and 1-propyl-1-methylpyrrolidinium, were qualitatively investigated and/or compared using a combination of crystallographic, Hirshfeld surface and thermal analysis techniques. The NMes2 salts are known to exhibit higher glass transitions and higher viscosities than those of the NTf2 salts. The origins of these differences were analysed in terms of the importance of factors such as the C-H•••O hydrogen bond, fluorination, presence of an aromatic moiety and length of alkyl chain, using the Hirshfeld surfaces and their associated fingerprint plots. Additionally, the existence of C-F•••π and C-H•••π interactions were elucidated and the significance of anion-anion interactions was recognised. Thermal analysis of the N-alkyl-2-methyl-3-benzylimidazolium iodide salts revealed that the methyl- and (s-)butyl substituted salts have a significantly higher melting point than the rest of the series. Analysis of these crystal structures allowed examination of the influence of the substitutions on the different cation-anion and cation-cation interactions and thus the physical properties of the salts. Thermal analysis of the monohalide and trihalide salts revealed that the tribromide salts are lower melting than their monohalide analogues. Analysis of these crystal structures revealed the influence of the anions and the crystal packing on the physical properties of the salts. A series of crystalline and liquid salts were prepared from cations and anions drawn from Active Pharmaceutical Ingredients (APIs) and Generally Recognized As Safe (GRAS) materials. The solid-state structures of the crystalline salts were used as a basis for the anti-crystal engineering approach in the preparation of several “Active Ionic Liquids” (AILs). However, a side product also resulted during the synthetic route namely, methyl 9H-xanthene-9-carboxylate, a side product resulting from the API, propantheline. The results and methodology of the anti-crystal engineering procedure and the subsequent successful preparation and characterization of pharmaceutical ionic compounds are reported herein.
468

The Electronic Spectroscopy of Neutral and Ionic Clusters

Bieske, Evan John, n/a January 1989 (has links)
This thesis is concerned with weakly bound neutral and ionic clusters. Spectra of the region near the S1fS0 electronic origin of four neutral van der Waals molecules - aniline-argon, phenol-argon, chlorobenzene-argon and fluorobenzene-argon - were obtained using resonance enhanced multiphoton ionization (REMPI). These spectra indicate that Fermi resonances between van der Waals stretching and bending motions are important in these molecules. Effective Hamiltonians are constructed that describe well the low frequency vibrations. In order to better discuss the low frequency van der Waals motions of aromatics bound to one and two rare gas atoms a simple model for the vibrations is developed. The model enables expression of van der Waals frequencies in terms of fundamental molecular properties and enables facile comparison of effective force constants in a variety of van der Waals molecules. The model is successfully employed to explain van der Waals vibrational structure associated with the origin region of aniline-(argon)2 using van der Waals potential parameters derived from the aniline-(argon)1 spectrum. REMPI and emission spectra of larger clusters of aniline and argon are also reported and discussed. Using atom-atom potentials, equilibrium structures for aniline-(argon)n (n=l, 2, 3) are calculated. The calculations prove useful in the analysis of the spectra.The BfX transitions of the cation complexes fluorobenzene+-argon and chlorobenzene+-argon have been investigated. The cations were prepared by resonance enhanced multiphoton ionization of the neutral van der Waals molecules. A time delayed tunable dye laser was then used to dissociate the cations, loss of an argon atom being the dominant process. When the second laser was tuned to a cation resonance the dissociation cross section increased markedly, allowing characterization of BfX transition. The resulting spectra are presented and discussed.
469

Investigations into the mechanical properties and curing characteristics of dental glass-ionomer cements

Prentice, Leon Hugh Unknown Date (has links) (PDF)
Conventional glass ionomer cements (GICs), which continue to gain acceptance as superbly biocompatible dental materials, were first released in the early 1970s as a result of research into combining the advantages of silicate cements and polyalkenate cements. The chemistry of GICs is based upon the aqueous reaction between an ion-leachable fluoride glass and polyacid which yields the final cross-linked insoluble ionomer (ionic polymer). The significant advantages of GICs include direct adhesion to tooth structures, fluoride release, minimal dimensional change on curing, significant ease of use and superb biocompatibility, to the extent that affected proximal tooth structures may be retained, remineralised , and strengthened against further caries. GICs have, however, been unfavourably compared with other restorative materials in their mechanical properties and setting characteristics, in particular their relative weakness, the time limitations for the acid-base reaction to proceed to acceptable maturity, and the susceptibility of the immature cement to water sorption or desiccation.
470

Flavins as Biomimetic Catalysts for Sulfoxidation by H<sub>2</sub>O<sub>2</sub> : Catalyst Immobilization in Ionic Liquid for H<sub>2</sub>O<sub>2</sub> Oxidations

Lindén, Auri January 2005 (has links)
<p>This thesis deals with the development of catalytic oxidation reactions utilizing hydrogen peroxide as terminal oxidant. The main focus has been to find flavin catalysts that are easy to handle and stable to store but still able to perform the desired reaction. A variety of dihydroflavins were prepared and the electrochemical oxidation potentials were measured and compared with their catalytic activity.</p><p>A flavin catalyst was applied in the sulfoxidation of allylic and vinylic sulfides by H<sub>2</sub>O<sub>2</sub>. This transformation was highly chemoselective and the sulfoxides were obtained without formation of other oxidation products. The scope of the reaction was demonstrated by applying the method on substrates with a wide range of functional groups such as a tertiary amine. Another flavin catalyst was immobilized in the ionic liquid [BMIm]PF<sub>6</sub> and used for sulfoxidations by H<sub>2</sub>O<sub>2</sub>. The chemoselectivity was maintained in this system and the catalyst-ionic liquid system could be recycled several times.</p><p>Finally two bimetallic catalyst systems for the dihydroxylation of alkenes by H<sub>2</sub>O<sub>2</sub> were immobilized in the ionic liquid. These systems employed either vanadium acetylacetonate VO(acac)<sub>2 </sub>or methyl trioxorhenium (MTO) as co-catalysts together with the substrate-selective osmium catalyst. Good to excellent yields of the diols were obtained.</p>

Page generated in 0.039 seconds