• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular basis of BCL2L10/Nrh oncogenic activity in breast cancer / Bases Moléculaires de l’activité oncogénique de BCL2L10/Nrh dans le contexte du cancer du sein

Nougarede, Adrien 18 October 2016 (has links)
L'apoptose, ou « mort cellulaire programmée », joue un rôle clé dans de nombreux processus biologiques. Les protéines de la famille Bcl-2, dont l'expression est souvent altérée dans les cellules tumorales, sont les principaux régulateurs de l'apoptose. Parmi cette famille, la fonction exacte du répresseur apoptotique Nrh, aussi appelé BCL2L10 ou Bcl-B, reste à ce jour mal comprise. Bien que son expression ne soit pas détectable dans la plupart des tissus sains, on retrouve des niveaux élevés de Nrh corrélés à un mauvais pronostique dans les cancers du sein et de la prostate. Nous avons mis au jour un nouveau mécanisme selon lequel Nrz, l'orthologue de Nrh chez le poisson zèbre, interagit avec le domaine de liaison du ligand IP3 du canal calcique IP3R1. Il s'est avéré que la régulation négative des flux calciques par Nrz est critique lors du développement embryonnaire du poisson zèbre. Grâce à ces nouvelles données, nous avons cherché à comprendre la fonction de Nrh chez l'Homme, dans un contexte pathologique. Nous avons montré que Nrh interagit via son domaine BH4 avec le domaine de liaison du ligand du récepteur IP3R1 humain pour réguler l'homéostasie calcique et la mort cellulaire. Cette interaction définit Nrh comme la seule protéine de la famille Bcl-2 à réguler négativement la mort cellulaire exclusivement au niveau du réticulum endoplasmique. Pour aller plus loin, nous avons montré que la dissociation du complexe Nrh/IP3Rs sensibilise des cellules tumorales mammaires à l'action d'agents chimiothérapeutiques. Pour finir, nos résultats apportent une explication moléculaire sur la contribution de Nrh dans la résistance aux thérapies anti-tumorales / Apoptosis, also called “Programmed Cell Death”, plays a key role in many biological processes and pathologies. The B-cell lymphoma 2 (Bcl-2) proteins, whose expression is often altered in tumor cells, are the main regulators of apoptosis.Among this family, the actual physiological function of the human apoptosis inhibitor Nrh, also referred to as BCL2L10 or Bcl-B, remains elusive. Although in most healthy tissues the Nrh protein is nearly undetectable, clinical studies have shown that Nrh expression is correlated with poor prognosis in breast and prostate carcinomas. We have shed light on a novel mechanism by which Nrz, the zebrafish ortholog of Nrh, was found to interact with the Ligand Binding Domain (LBD) of the Inositol-1,4,5-triphosphate receptor (IP3R) type-I Ca2+ channel. Indeed, the regulation of IP3Rs-mediated Ca2+ signaling by Nrz was shown to be critical during zebrafish embryogenesis. We used the knowledge gained with the zebrafish model to investigate Nrh function in cancer. We showed that Nrh interacts with the LBD of IP3Rs via its BH4 (Bcl-2 Homology 4) domain, which is critical to regulate intracellular Ca2+ trafficking and cell death. Actually, this interaction seems to be unique among the Bcl-2 family, and sets Nrh as the only Bcl-2 homolog to negatively regulate apoptosis by acting exclusively at the Endoplasmic Reticulum. Furthermore, we showed that disruption of the Nrh/IP3Rs complex primes Nrh-dependent cells to apoptotic cell death and enhances chemotherapy efficiency in breast cancer cell lines.Lastly our results bring a new insight to the role of Nrh regarding chemotherapy resistance
2

INVESTIGATING THE ROLE OF RYR2 IN CA2+ DYNAMICS, INSULIN SECRETION, AND ELECTROPHYSIOLOGICAL PROPERTIES IN PANCREATIC B-CELLS

Emily K Lavigne (13169484) 28 July 2022 (has links)
<p>  </p> <p>The role of the endoplasmic reticulum (ER) Ca2+ release channels ryanodine receptor 2 (RyR2) and inositol 1,4,5-triphosphate receptor (IP3R) in pancreatic b-cell function are emerging, but are not well defined. It has been demonstrated that ER stress brought about by RyR2 dysfunction leads to impaired insulin secretion and contributes to the etiology of type 2 diabetes (T2D). Our work contributes to the understanding of the role of RyR2 in physiological pancreatic b-cell function and how loss of RyR2 contributes to the pathophysiology of T2D.</p> <p>To investigate the role of RyR2 in pancreatic b-cell function, we utilized CRISPR-Cas9 to delete RyR2 from the rat insulinoma INS-1 cell line (RyR2KO). We found that RyR2KO cells displayed an enhanced glucose-stimulated Ca2+ integral (area under the curve; AUC) and were sensitive to inhibition by the IP3R antagonist, xestospongin C. Loss of RyR2 also resulted in a reduction in IRBIT protein levels. Therefore, we deleted IRBIT from INS-1 cells (IRBITKO) and found that IRBITKO cells also displayed an increased Ca2+ AUC in response to glucose stimulation. We discovered that total cellular insulin content and secretion were reduced in RyR2KO cells, but more modestly reduced in IRBITKO cells. We found that <em>INS2</em> mRNA levels were reduced in both RyR2KO and IRBITKO cells, but <em>INS1</em> mRNA levels were specifically decreased in RyR2KO cells. Additionally, nuclear localization of S-adenosylhomocysteinase (AHCY) was increased in both RyR2KO and IRBITKO cells. DNA methylation of exon 2 of the <em>INS1</em> and <em>INS2</em> genes was more extensively methylated in RyR2KO and IRBITKO cells compared to controls. Proteomics analysis revealed that deletion of RyR2 or IRBIT resulted in differential regulation of 314 and 137 proteins, respectively, with 41 in common. Our results suggest that RyR2 regulates IRBIT levels and activity, and together maintain insulin content and secretion, and regulate the INS-1 cell proteome, perhaps via DNA methylation.</p> <p>The role of interplay between RyR2 and IP3R in Ca2+ signaling and homeostasis in pancreatic b-cell function remains understudied. Stimulation with the sulfonylurea tolbutamide resulted in markedly delayed Ca2+ transients in both RyR2KO and IRBITKO cells. Xestospongin C significantly reduced the AUC of Ca2+ in RyR2KO and IRBITKO cells. Muscarinic receptor stimulation revealed a markedly increased AUC of Ca2+ in IRBITKO cells compared to both RyR2KO and control INS-1 cells. Assessment of PLC activity revealed that basal and stimulated PLC activity were reduced in the absence of RyR2 or IRBIT. Store-operated Ca2+ entry (SOCE) following ER Ca2+ depletion revealed a decreased SOCE amplitude only in RyR2KO cells. Given evidence that phosphatidylinositol-4,5-bisphosphate (PIP2) depletion from the plasma membrane can regulate voltage-gated Ca2+ channel inhibition, we explored electrophysiological properties of all three cell lines. The frequency of glucose-stimulated action potentials was doubled in RyR2KO cells. Additionally, whole-cell voltage-gated Ca2+ current density was doubled in RyR2KO cells, and this current was more sensitive to hydrolysis of PIP2. These results evidence crosstalk between RyR2 and IP3R, and that RyR2 plays a critical role in maintaining proper Ca2+ homeostasis, PLC activity, and electrophysiological properties in pancreatic b-cells.</p>

Page generated in 0.0228 seconds