1 |
THE USE OF AN IRIG-106 CHAPTER 10 RECORDER AS A TELEMETRY SYSTEMBerdugo, Albert 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / IRIG-106 Chapter 10 has become the recording standard for most of the new flight test programs
and many of the current ongoing programs. The primary goal of the standard was to define a
common format for recording 100% bulk data such as PCM, MIL-STD-1553 busses,
Video/Audio, ARINC-429, Ethernet, IEEE-1394, Analog Data, and others. In most cases the
standard has provided the instrumentation engineers and the data analysts with a recording
solution that meets their needs. Many programs require transmission of safety of flight data from
a subset of the data acquired by the recorder. This may include selected video/audio channels,
selected avionics bus data, and others. This requirement presents a dilemma to the flight test
engineer who must duplicate part of the system for telemetry.
This paper discusses several applications in which the IRIG-106 Chapter 10 recorder can be used
as a telemetry system. It will include the transmission of bulk MIL-STD-1553 data per IRIG-106
Chapter 8, transmission of multiple Video/Audio and PCM data channels, and transmission of
selected avionics data per IRIG-106 Chapter 4.
|
2 |
OVERVIEW OF F-22 UPGRADED INSTRUMENTATION SYSTEMNatale, Louis, Berdugo, Albert 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The F-22 flight test program used a traditional distributed data acquisition system and a non IRIG-106 Chapter 10 recording system for its flight test program. In addition, it required a separate and very large Harris DAU system to monitor and record avionic data buses carrying secure data. Due to the size, cost, and the obsolescence of the Harris DAU system and components, Lockheed evaluated replacement systems. TTC proposed to develop F-22 specific Fiber Optic avionics bus monitors and an avionics PCM Data Selector / Encoder as part of its distributed IRIG-106 Chapter 10 Multiplexer / Recorder system to replace the Harris DAU. This replacement system challenges the traditional system approach used in many flight test programs. This paper describes the evolutionary process to design two independent distributed data acquisition and recording systems handling data with different classification levels. The data separation is maintained by way of system wiring, proper hardware that holds no residual data once power is removed, different transmission channels, hardware-based message blocking, and a separate IRIG-106 Chapter 10 multiplexing / recording system.
|
3 |
RANGE COMMANDER’S COUNCIL (RCC) TELECOMMUNICATIONS AND TIMING GROUP (TTG) UPDATE ON TM OVER IP STANDARD DEVELOPMENTEslinger, Brian, Kovach, Bob 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The RCC TTG initiated task TT-49 to generate a standard for the transport of serial streaming
telemetry (TM) over the Internet Protocol (IP). An ad hoc committee was activated comprised of
Range and vendor participation to develop this standard. This paper will address the progress of
the standard, the use of commercial standards, and the benefits to the ranges. The early meetings
focused on developing the packet structure; the preliminary results will be presented along with
the latest status on the RCC approval cycle.
|
4 |
Data Filtering Unit (DFU): Dealing With Cryptovariable Keys in Data Recorded Using the IRIG 106 Chapter 10 FormatManning, Dennis, Williams, Rick, Ferrill, Paul 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Recent advancements in IRIG 106 Chapter 10 recording systems allow the recording of
all on board 1553 bus and PCM traffic to a single media. These advancements have also
brought about the issue of extracting data with different levels of classification that was
written to single location. Carrying GPS “smart” weapons further complicates this issue
since the recording of GPS keys adds another level of classification to the mix. The
ability to separate and/or remove higher level data from a data product is now required.
This paper describes the design of a hardware device that will filter specified data from
IRIG 106 Chapter 10 recorder memory modules (RMMs) to prevent the storage device or
computer from becoming classified at the level of the specified data.
|
5 |
MINING IRIG-106 CHAPTER 10 AND HDF-5 DATALockard, Michael T., Rajagopalan, R., Garling, James A. 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Rapid access to ever-increasing amounts of test data is becoming a problem. The authors
have developed a data-mining methodology solution approach to provide a solution to
catalog test files, search metadata attributes to derive test data files of interest, and query
test data measurements using a web-based engine to produce results in seconds.
Generated graphs allow the user to visualize an overview of the entire test for a selected
set of measurements, with areas highlighted where the query conditions were satisfied.
The user can then zoom into areas of interest and export selected information.
|
6 |
THE IRIG 106 CHAPTER 10 SOLID-STATE ON-BOARD RECORDER STANDARD: A DATA PROCESSING PERSPECTIVEThomas, Tim 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The Telemetry Group (TG) of the Range Commanders Council (RCC) developed the Chapter 10 addition to the IRIG 106 standard to “establish a common interface standard for the implementation of solid-state digital data acquisition and on-board recording systems” ([1]). This standard is intended to allow the development of a common set of data playback/reduction software, minimizing the need for a large number of unique programs to handle proprietary data structures. This paper analyzes the Chapter 10 standard from a data processing perspective, providing insight into the benefits and challenges developers will face when writing Chapter 10 software.
|
7 |
A MULTIPLEXER/RECORDER ARCHITECTURE FOR USE WITH CONVENTIONAL MEDIA TECHNOLOGYBerdugo, Albert 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Instrumentation recorders have evolved continuously over the years. Their growth has primarily
been driven by technology advancements. The latest recording equipment generally utilizes hard
disk, disk array, or solid-state storage technology, which results in greater capacity and
performance. Most recorders integrate storage media with multiplexer electronics resulting in a
highly efficient yet inflexible and physically large recording system.
This paper describes an instrumentation multiplexer/recorder system using an open architecture
between the multiplexer and the storage media that allows insertion of conventional recording
technologies. This approach provides a generalized solution with enough flexibility and
scalability to address the majority of instrumentation recording needs. This system is based on
the latest IRIG-106 chapter 10 standard, thus supporting interoperability throughout the flight
test community.
|
8 |
ADVANCED DISTRIBUTED WIDEBAND DATA ACQUISITION SYSTEMBerdugo, Albert 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Wideband data acquisition units have been used as part of an instrumentation system for several decades. Historically, these units operated asynchronously from each other, and from the rest of the instrumentation system when installed on the same test vehicle. When many wideband units are required to slave their formats or sampling rate to the test vehicle’s event of interest such as external computer event clock, radar, or laser pulse train; few solutions were available. Additionally, a single test vehicle may use ten to thirty wideband units operating at up to 20 Mbps each. Such systems present a challenge to the instrumentation engineers to synchronize, transmit safety of flight information, and record. This paper will examine a distributed wideband data acquisition system in which each acquisition unit operates under its own data rate and format, yet remains fully synchronized to an external fixed or variable simultaneous sampling rate to provide total system coherency. The system aggregate rate can be as low as a few Mbps to as high as 1 Gbps. Data acquired from the acquisition units is further multiplexed per IRIG-106 chapter 10 using distributed data multiplexers for recording.
|
9 |
IRIG 106 CHAPTER 10 RECORDER VALIDATIONFerrill, Paul, Golackson, Michael 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The most recent version of IRIG 118, Test Methods for Telemetry Systems and Subsystems, was
released in 1999 and does not include any guidance for testing IRIG 106 Chapter 10 recorder /
reproducers. This paper will describe the methodology and tools used to perform a thorough
testing process to ensure compliance with the IRIG 106-07 standard.
|
10 |
IRIG-106 CHAPTER 10 RECORDER WITH BUILT-IN DATA FILTERING MECHANISMBerdugo, Albert, Natale, Louis 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Sixteen years ago, RCC added Chapter 8 to the IRIG-106 standard for the acquisition of 100% MIL-STD-1553 data from up to eight buses for recording and/or transmission. In the past 5 years, the RCC recording committee added Chapter 10 to the IRIG-106 standard for acquisition of 100% data from PCM, MIL-STD-1553 busses, Video, ARINC-429, Ethernet, IEEE-1394, and others. IRIG-106 Chapter 10 recorder suppliers have further developed customer-specific interfaces to meet additional customer needs. These needs have included unique radar and avionic bus interfaces such as F-16 Fibre Channel, F-35 Fibre Channel, F-22 FOTR, and others. IRIG-106 Chapter 8 and Chapter 10 have provided major challenges to the user community when the acquired avionics bus data included data that must be filtered and never leave the test platform via TM or recording media. The preferred method of filtering data to ensure that it is never recorded or transmitted is to do so at the interface level with the avionic busses. This paper describes the data filtering used on the F-22 Program for the MIL-STD-1553 buses and the FOTR bus as part of the IRIG-106 Chapter 10 Multiplexer/Recorder System. This filtering method blocks selected data at the interface level prior to being transferred over the system bus to the media(s). Additionally, the paper describes the configuration method for defining the data to be blocked and the report generated in order to allow for a second party to verify proper programming of the system.
|
Page generated in 0.0196 seconds