101 |
The Effect of Iron Oxide Nanoparticles on the Fate and Transformation of Arsenic in Aquatic EnvironmentsDickson, Dionne 20 March 2013 (has links)
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions.
A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.
|
102 |
Radionuclide speciation during mineral reactions in the chemically disturbed zone around a geological disposal facilityMarshall, Timothy January 2014 (has links)
Geological disposal of radioactive wastes currently stored at Earth's surface is now the favoured management pathway for these materials. Typically, intermediate level wastes (ILW) are grouted and emplaced in a geological disposal facility (GDF) which will be backfilled, possibly with cementitious materials. Post-closure leaching of the cementitious materials in a GDF is expected to create hyperalkaline conditions in and around the repository, resulting in mineral alteration and crystallisation, both within the engineered barrier and host rock; creating a persistent chemically disturbed zone (CDZ). Iron derived from within the host rock as a result of alkaline breakdown of Fe-bearing silicate minerals (e.g. biotite, chlorite); corrosion products formed within the repository; or iron contained within the waste; will form secondary iron (oxyhydr)oxide minerals. The formation and re-crystallisation of these reactive mineral phases may sequester radionuclides through a host of processes: surface-mediated reduction to less soluble forms; adsorption onto, and/or incorporation into stable secondary or tertiary iron oxide phases. Therefore iron (oxyhydr)oxides will be key to the fate of radionuclides potentially released from within radioactive wastes disposed of in a GDF.In this study, the fate of U(VI) and Tc(VII) was considered during crystallisation of ferrihydrite to more stable iron oxide phases (e.g. hematite and magnetite) and, in three synthetic cement leachates (pH 13.1, 12.5, 10.5) designed to reflect the early-, middle- and late-stage evolution of the CDZ. XRD and SEM/TEM have been used to characterise the mineralogy during crystallisation. Partitioning of U(VI) and Tc(VII) between the solid and solution has been followed throughout, with chemical extractions used to determine the distribution of the radionuclides adsorbed to, and incorporated within the solid. Synchrotron-based XAS techniques have been utilised to probe the oxidation state and molecular scale bonding environment of the radionuclides associated with the solids. The data suggest that: U(VI) is incorporated into the hematite structure in place of Fe(III), in a distorted octahedral environment with elongation of the uranyl bond; Tc(VII) is reduced to Tc(IV) and incorporated into the octahedral site within the magnetite structure in place of Fe(III), and is retained in the same environment even after extensive oxidation of the magnetite to maghemite; and that U(VI) may also be incorporated as U(V) or U(VI) into the magnetite structure, with similar recalcitrant behaviour during oxidation. These results highlight the importance of mineral reactions within the CDZ as potentially significant pathways for immobilising radionuclides released from a GDF.
|
103 |
Produção do coagulante cloreto férrico a partir de carepa da indústria siderúrgicaSilva, Rogerio Giordani da January 2013 (has links)
A carepa é um resíduo da produção de aço gerado principalmente nas etapas de lingotamento e laminação. O objetivo do presente trabalho foi a produção do coagulante cloreto férrico a partir da carepa oriunda da indústria siderúrgica. Em termos experimentais, foram realizados ensaios de solubilização da carepa avaliando-se o efeito da concentração de ácido clorídrico, tempo de reação e temperatura. Ainda, avaliou-se a oxidação do Fe2+, presente no liquor, para Fe3+ por dois métodos distintos, sendo adição de peróxido de hidrogênio e injeção de ozônio. A solução de cloreto férrico produzido a partir da carepa foi caracterizada e aplicada no tratamento de esgoto doméstico sanitário de uma instituição universitária. Como resultado, a melhor condição para a dissolução da carepa foi com o uso de uma solução de HCl 90%, tempo de reação de 2 horas a uma temperatura de 80oC. Nesta condição, a eficiência de dissolução da carepa foi de 90%. A completa oxidação do Fe2+ dissolvido no liquor para Fe3+ foi possível tanto com a adição de H2O2 como com O3. Contudo, o processo de ozonização apresenta vantagens, pois estequiometricamente é mais eficiente e não dilui a solução rica em cloreto férrico. A análise físico-química do coagulante produzido com a digestão da carepa com HCl 90% e oxidada com ozônio, após evaporação, atendeu ao critério de concentração de Fe de no mínimo 12% em volume. A aplicação do reagente no tratamento de um esgoto doméstico sanitário mostrou que é eficiente na remoção de sólidos suspensos e fósforo. Por fim o estudo mostrou que é possível produzir um coagulante a partir da carepa gerada na indústria siderúrgica. A prática sugerida neste trabalho pode reduzir a quantidade de resíduos deslocados para aterros industriais pela indústria siderúrgica. / Mill scale is a residue of steel production generated mainly in casting and lamination phases. The objective of this work was the production of the ferric chloride coagulant from the mill scale which comes from the steel industry. In experimental terms, trials of mill scale solubility were carried out in order to evaluate the effect of hydrochloric acid concentration, reaction time and temperature. After that, the oxidation of Fe2 +, present in the liquor, to Fe3 + was evaluated by two distinct methods, addition of hydrogen peroxide and ozone injection. The ferric chloride solution produced from mill scale was characterized and applied in the sewage treatment of a university campus. As a result, a good condition for the dissolution of mill scale was with the use of 90% HCl solution, reaction time of 2 hours, at a temperature of 80ºC. In this condition, the efficiency of mill scale dissolution was of 90%. The complete oxidation of Fe2+ dissolved in the liquor for Fe3+ was possible both with the addition of H2O2 as well as with O3. However, the ozonation process has advantages because it is stoichiometrically more efficient and does not dilute the solution rich in ferric chloride. Physico-chemical analysis of the coagulant produced with the dissolution of mill scale with 90% HCl and oxidized with ozone, after evaporation, answered to the criterion of Fe concentration of, at least, 12% in volume. The use of the reagent in the treatment of a sewer showed that it is effective in removing suspended solids and phosphorus. Finally, it is possible to produce a coagulant from mill scale produced in the steel industry. The practice suggested in this work can reduce the amount of waste sent to industrial landfills by the steel industry.
|
104 |
Environmental and biomedical applications of iron oxide/ mesoporous silica core-shell nanocompositesEgodawatte, Shani Nirasha 01 May 2016 (has links)
Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions.
Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution.
In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous silica as well as a judicious choice of pH. Modified magnetic mesoporous silica material was also found to have high adsorption capacity for high and low pH aqueous solutions of Uranium (VI).
Tuning the loading and release of a small drug molecule (5-FU) onto these iron oxide/ mesoporous silica core-shell materials was also investigated. The polarity of the solvent used to load 5-FU onto the host had an impact not only on the loading but also on the release percentage of 5-FU. The synthesis of a novel core-shell material with a hematite nanofiber core and a SBA type mesoporous silica shell was also explored.
|
105 |
Design and Synthesis of Porous Smart Materials for Biomedical ApplicationsOmar, Haneen 11 1900 (has links)
Porous materials have garnered significant interest within scientific community
mainly because of the possibility of engineering their pores for selective applications.
Currently, much research has focused on improving the therapeutic indices of the active
pharmaceutical ingredients engineered with nanoparticles.
The main goal of this dissertation is to prepare targetable and biodegradable
silica/organosilica nanoparticles for biomedical applications with a special focus on
engineering particle pores.
Herein, the design of biodegradable silica-iron oxide hybrid nanovectors with large
mesopores for large protein delivery in cancer cells is described. The mesopores of the
nanomaterials span 20 to 60 nm in diameter, and post-functionalization allowed the
electrostatic immobilization of large proteins (e.g., mTFP-Ferritin, ~534 kDa). The
presence of iron oxide nanophases allowed for the rapid biodegradation of the carrier in
fetal bovine serum as well as magnetic responsiveness. The nanovectors released large
protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of
large proteins was then autonomously achieved in cancer cells via the silica-iron oxide
nanovectors, which is thus promising for biomedical applications.
Next, the influence of competing noncovalent interactions in the pore walls on the
biodegradation of organosilica frameworks for drug delivery applications is studied.
Enzymatically-degradable azo-bridged organosilica nanoparticles were prepared and
then loaded with the anticancer drug doxorubicin (DOX). Controllable drug release was
observed only upon the stimuli-mediated degradation of azo-bridged organosilica
nanoparticles in the presence of azoreductase enzyme triggers or under hypoxia
conditions. These results demonstrated that azo-bridged organosilica nanoparticles are
biocompatible, biodegradable drug carriers and that cell specificity can be achieved both
in vitro and in vivo. Overall, the results support the importance of studying self-assembly
patterns in hybrid frameworks to better engineer the next generation of dynamic or “soft”
porous materials.
|
106 |
Simultaneous removal of H₂S and siloxane from biogas using a biotrickling filter / 生物付着担体充填塔を用いたバイオガスからの硫化水素とシロキサンの同時除去に関する研究Zhang, Yuyao 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23181号 / 工博第4825号 / 新制||工||1754(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 高岡 昌輝, 教授 橋本 訓, 准教授 大下 和徹 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
107 |
Decomposition of ammonium perchlorate encapsulated nanoscale and micron-scale catalyst particlesSpencer A Fehlberg (8774588) 29 April 2020 (has links)
<p>Iron oxide is the most common catalyst in
solid rocket propellant. We have previously demonstrated increased performance
of propellant by encapsulating iron oxide particles within ammonium perchlorate
(AP), but only nanoscale particles were used, and encapsulation was only
accomplished in fine AP (~20 microns in diameter). In this study, we extended the
size of particle inclusions to micron-scale within the AP particles as well the
particle sizes of the AP-encapsulated catalyst particles (100s of microns) using
fractional crystallization techniques with the AP-encapsulated particles as
nucleation sites for precipitation. Here we report catalyst particle inclusions
of micron-scale, as well as nanoscale, within AP and present characterization
of this encapsulation. Encapsulating micron-sized particles and growing these
composite particles could pave the way for numerous possible applications. A
study of the thermal degradation of these AP-encapsulated particles compared
against a standard mixture of iron oxide and AP showed that AP-encapsulated
micron-scale catalyst particles exhibited similar behavior to AP-encapsulated
nanoscale particles. Using computed tomography, we
found that catalyst particles were dispersed throughout the interior of coarse
AP-encapsulated micron-scale catalyst particles and decomposition was induced
within these particles around catalyst-rich regions.</p>
|
108 |
Metal-Support Interaction and Electrochemical Promotion of Nano-Structured Catalysts for the Reverse Water Gas Shift ReactionPanaritis, Christopher 01 April 2021 (has links)
The continued release of fossil-fuel derived carbon dioxide (CO₂) emissions into our atmosphere led humanity into a climate and ecological crisis. Converting CO₂ into valuable chemicals and fuels will replace and diminish the need for fossil fuel-derived products. Through the use of a catalyst, CO₂ can be transformed into a commodity chemical by the reverse water gas shift (RWGS) reaction, where CO₂ reacts with renewable hydrogen (H₂) to form carbon monoxide (CO). CO then acts as the source molecule in the Fischer-Tropsch (FT) synthesis to form a range of hydrocarbons to manufacture chemicals and fuels. While the FT synthesis is a mature process, the conversion of CO₂ into CO has yet to be made commercially available due to the constraints associated with high reaction temperature and catalytic stability.
Noble metal ruthenium (Ru) has been widely used for the RWGS reaction due to its high catalytic activity, however, several constraints hinder its practical use, associated with its high cost and its susceptibility to deactivation. The doping or bimetallic use of non-noble metals iron (Fe) and cobalt (Co) is an attractive option to lower material cost and tailor the selectivity of the CO₂ conversion towards the RWGS reaction without compromising catalytic activity. Furthermore, employing nanostructured catalysts as nanoparticles is a viable solution to further lower the amount of metal used and utilize the highly active surface area of the catalyst. Dispersing nanoparticles on ionically conductive supports/solid electrolytes which contain species like O²⁻, H⁺, Na⁺, and K⁺, provide an approach to further enhance the reaction. This phenomenon is referred to as metal-support interaction (MSI), allowing for the ions to back spillover from the support and onto the catalyst surface. An in-situ approach referred to as Non-Faradaic Modification of catalytic activity (NEMCA), also known as electrochemical promotion of catalysis (EPOC) is used to in-situ control the movement of ionic species from the solid electrolyte to and away from the catalyst. Both the MSI and EPOC phenomena have been shown to be functionally equivalent, meaning the ionic species act to alter the work function of the catalyst by forming an effective neutral double layer on the surface, which in turn alters the binding energy of the reactant and intermediate species to promote the reaction.
The main objective of this work is to develop a catalyst that is highly active and selective to the RWGS reaction at low temperatures (< 400 °C) by employing the MSI and EPOC phenomena to enhance the catalytic conversion. The electrochemical enhancement effect will lower energy requirements and allow the RWGS reaction to take place at moderate temperatures. Catalysts composed of Ru, Fe and Co were synthesized through the polyol synthesis technique and deposited on mixed-ionically conductive and ionically conductive supports to evaluate their performance towards the RWGS reaction and the MSI effect. The nano-structured catalysts are deposited as free-standing nanoparticles on solid electrolytes to in-situ promote the catalytic rate through the EPOC phenomenon. Furthermore, Density Functional Theory (DFT) calculations were performed to correlate theory with experiment and elucidate the role polarization has on the binding energy of reactant and intermediate species.
The high dispersion of RuFe nanoparticles on ion-containing supports like samarium-doped ceria (SDC) and yttria-stabilized zirconia (YSZ) led to an increase in the RWGS activity due to the MSI effect. A direct correlation between experimental and DFT modeling was established signifying that polarization affected the binding energy of the CO molecule on the surface of Ru regardless of the type of ionic species in the solid electrolyte. The electrochemical enhancement towards the RWGS reaction has been achieved with iron-oxide (FeOₓ) nanowires on YSZ. The in-situ application of O²⁻ ions from YSZ maintained the most active state of Fe₃O₄ and FeO towards the RWGS reaction and allowed for persistent-promoted state that lasted long after potential application. Finally, the deposition of FeOₓ nanowires on Co₃O₄ resulted in the highest CO₂ conversion towards the RWGS reaction due to the metal-oxide interaction between both metals, signifying a self-sustained electro-promoted state.
|
109 |
Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide SurfacesMurray, Eric 12 1900 (has links)
This study was intended to provide a fuller understanding of the surface chemical processes which result in the corrosion of ferrous materials.
|
110 |
Příprava uniformních superparamagnetických částic s polymerním povlakem pro biomedicínské aplikace / Preparation of uniform superparamagnetic particles with polymer coating for biomedical applicationsPatsula, Vitalii January 2018 (has links)
Aim of this thesis was to design and prepare polymer-coated monodisperse Fe3O4 nanoparticles as a safe and non-toxic contrast agent for magnetic resonance imaging (MRI) and heat mediator for hyperthermia. Uniform superparamagnetic Fe3O4 nanoparticles were synthesized by thermal decomposition of Fe(III) oleate, mandelate, or glucuronate in high- boiling solvents at temperature >285 řC. Size of the particles was controlled in the range of 8- 27 nm by changing reaction parameters, i.e., temperature, type of iron precursor, and concentration of stabilizer (oleic acid and/or oleylamine), while preserving uniformity of the nanoparticles. Because particles contained hydrophobic stabilizer on the surface, they were dispersible only in organic solvents. To ensure water dispersibility, oleic acid on the particle surface was replaced by hydrophilic and biocompatible methoxy-poly(ethylene glycol) (PEG) and poly(3-O-methacryloyl-α-D-glucopyranose) by ligand exchange. Polymers were previously terminated with anchoring-end groups (hydroxamic or phosphonic) to provide firm bonding to iron atoms on the particle surface. Fe3O4 nanoparticles were also hydrophilized by encapsulation into a silica shell by reverse microemulsion method. Tetramethyl orthosilicate was used to prepare Fe3O4@SiO2 nanoparticles, which were...
|
Page generated in 1.0128 seconds