• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • Tagged with
  • 18
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discovery of a novel lipoxygenase pathway in skin

Yu, Zheyong, January 2005 (has links)
Thesis (Ph. D. in Pharmacology)--Vanderbilt University, Dec. 2005. / Title from title screen. Includes bibliographical references.
2

UPDATED MOLECULAR GENETICS AND PATHOGENESIS OF ICHTHYOSES

AKIYAMA, MASASHI 08 1900 (has links)
No description available.
3

Hereditary ichthyosis : causes, skin manifestations, treatments and quality of life /

Gånemo, Agneta, January 2002 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2002. / Härtill 4 uppsatser.
4

Positional cloning of disease causing genes : a genetic study of obesity, Ichthyosis prematurity syndrome and Meniere's disease /

Klar, Joakim, January 2005 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2005. / Härtill 4 uppsatser.
5

Organotypic human skin disease models for the assessment of novel therapeutic approaches

Fell, Benjamin January 2017 (has links)
Comprehensive in vitro modelling of inflammatory human skin conditions is an essential first step in the development and assessment of potential therapeutic approaches. Mouse models or monolayer keratinocyte cultures come with distinct limitations which might be complimented or overcome by the use of human-specific organotypic 3D culture models. Over the course of this thesis, an organotypic culture system, based on patientderived immortalised keratinocyte cell lines on a dermal equivalent collagen 1 gel, was established and used to recapitulate phenotypical features for two hereditary skin diseases, Harlequin ichthyosis and Tylosis with oesophageal cancer. Small molecular compounds, supplied via the medium, or RNA interference were used to modulate disease-specific changes in histology and marker expression of the skin equivalent. Since hyperproliferative skin conditions can be associated with an aberrant wound healing phenotype, the organotypic system was manipulated to obtain a basic in vitro wound healing model. This model displays typical features of re-epithelialisation over time (both normal and disease-specific) which can further be manipulated via shRNAmediated knockdown or the exogenous supply of compounds. In parallel, a non-disease model was used to assess the topical application of novel nanopolymeric drug delivery systems in regard to their ability to penetrate across the permeability barrier. Penetrance profiles for the organotypic model (in dependence of co-application with chemical enhancers) showed a similar pattern as for topical applications performed in parallel on explant skin. In conclusion, a highly adaptable human organotypic keratinocyte culture model was developed and used to recapitulate (and manipulate) skin disease phenotypes and epidermal wound healing in vitro, as well as perform first essential assessments of novel drug delivery systems.
6

Skin Barrier Function and mRNA Expression Profiles in Patients with Atopic Dermatitis, Ichthyosis Vulgaris, and X-linked Recessive Ichthyosis : Aetiopathogenic Differences and the Impact of Moisturizing Treatment

Sturesdotter Hoppe, Torborg January 2013 (has links)
Atopic dermatitis (AD), ichthyosis vulgaris (IV), and X-linked recessive ichthyosis (XLRI) are characterized by dry skin and impaired skin barrier. AD and IV are related to loss-of-function mutations in FLG (encoding filaggrin), whereas XLRI is caused by deletions or inactivating mutations in the steroid sulphatase gene (STS). Patients regularly use moisturizing creams, but little is known about the creams’ effects on the skin barrier. The present work combines objective scorings, non-invasive techniques, and molecular analyses of skin biopsies to characterize the skin in 57 patients with AD, IV, or XLRI, and in 14 healthy controls. Patients were classified according to their FLG and STS mutation status: AD with FLG+/+ (n = 14), AD with FLG+/– (n = 14), AD/IV with FLG–/– (n = 15), and XLRI with STS– (n = 14), as well as one man with a novel point mutation. Assessments were conducted at baseline and after four weeks of treatment with three different moisturizers applied to volar forearm skin. At baseline, dryness scoring and non-invasive assessments verified impaired skin barrier function in all patients. In patients with AD/IV, microarray analysis identified 300–3000 up- or downregulated mRNA transcripts involved in signalling pathways important for inflammation and barrier repair. The skin phenotype and number of altered transcripts were correlated with the FLG mutation status, with FLG–/– patients displaying the highest transepidermal water loss (TEWL) and the most altered transcript levels. In contrast, despite an equally dysfunctional skin barrier, only limited changes in mRNA transcripts occurred in XLRI patients. Treatment with moisturizers improved skin dryness similarly in all groups, but TEWL behaved differently: it decreased slightly in the AD/IV group and increased in the XLRI group, especially after urea treatment. Only minute effects on skin pH and mRNA expression were observed. In conclusion, FLG mutations elicit pro-inflammatory mechanisms probably aimed at restoring barrier competence. This does not occur in patients with XLRI, presumably because STS deficiency automatically increases the barrier thickness. Moisturizing treatment improves skin dryness in patients with AD, IV, or XLRI, but does not seem to normalize the altered epidermal gene expression profile in AD/IV patients.
7

Hereditary ichthyosis : Causes, Skin Manifestations, Treatments and Quality of Life

Gånemo, Agneta January 2002 (has links)
<p>Hereditary ichthyosis is a collective name for many dry and scaly skin disorders ranging in frequency from common to very rare. The main groups are autosomal recessive lamellar ichthyosis, autosomal dominant epidermolytic hyperkeratosis and ichthyosis vulgaris, and x-linked recessive ichthyosis. Anhidrosis, ectropion and keratodermia are common symptoms, especially in lamellar ichthyosis, which is often caused by mutations in the transglutaminase 1 (TGM1) gene. The aim of this work was to study patients with different types of ichthyosis regarding (i) the patho-aetiology (TGM1 and electron microscopy [EM] analysis), (ii) skin signs and symptoms (clinical score and subjective measure of disease activity), (iii) quality of life (questionnaires DLQI, SF-36 and NHP and face-to-face interviews) and (iv) a search for new ways of topical treatment. Patients from Sweden and Estonia with autosomal recessive congenital ichthyosis (n=83) had a broader clinical spectrum than anticipated, but a majority carried TGM1 mutations. Based on DNA analysis and clinical examinations the patients were classified into three groups, which could be further subdivided after EM analysis. Our studies indicate that patients with ichthyosis have reduced quality of life as reflected by DLQI and by some domains of SF-36, by NHP and the interviews. All the interviewees reported that their skin disease had affected them negatively to varying degrees during their entire lives and that the most problematic period was childhood. All patients with ichthyosis use topical therapy. In a double-blind study creams containing either 5% urea or 20% propylene glycol were found inferior to a cream formulation containing lactic acid 5% and propylene glycol 20% both regarding clinical improvement and thinning of the skin barrier. Improved topical therapy may reduce the need of more toxic, oral drugs. Future studies should elucidate whether this increases the quality of life of ichthyosis patients, especially if combined with more detailed information about the aetiology and inheritance of the diseases.</p>
8

Hereditary ichthyosis : Causes, Skin Manifestations, Treatments and Quality of Life

Gånemo, Agneta January 2002 (has links)
Hereditary ichthyosis is a collective name for many dry and scaly skin disorders ranging in frequency from common to very rare. The main groups are autosomal recessive lamellar ichthyosis, autosomal dominant epidermolytic hyperkeratosis and ichthyosis vulgaris, and x-linked recessive ichthyosis. Anhidrosis, ectropion and keratodermia are common symptoms, especially in lamellar ichthyosis, which is often caused by mutations in the transglutaminase 1 (TGM1) gene. The aim of this work was to study patients with different types of ichthyosis regarding (i) the patho-aetiology (TGM1 and electron microscopy [EM] analysis), (ii) skin signs and symptoms (clinical score and subjective measure of disease activity), (iii) quality of life (questionnaires DLQI, SF-36 and NHP and face-to-face interviews) and (iv) a search for new ways of topical treatment. Patients from Sweden and Estonia with autosomal recessive congenital ichthyosis (n=83) had a broader clinical spectrum than anticipated, but a majority carried TGM1 mutations. Based on DNA analysis and clinical examinations the patients were classified into three groups, which could be further subdivided after EM analysis. Our studies indicate that patients with ichthyosis have reduced quality of life as reflected by DLQI and by some domains of SF-36, by NHP and the interviews. All the interviewees reported that their skin disease had affected them negatively to varying degrees during their entire lives and that the most problematic period was childhood. All patients with ichthyosis use topical therapy. In a double-blind study creams containing either 5% urea or 20% propylene glycol were found inferior to a cream formulation containing lactic acid 5% and propylene glycol 20% both regarding clinical improvement and thinning of the skin barrier. Improved topical therapy may reduce the need of more toxic, oral drugs. Future studies should elucidate whether this increases the quality of life of ichthyosis patients, especially if combined with more detailed information about the aetiology and inheritance of the diseases.
9

The role of SNAP29 during epidermal differentiation

Seebode, Christina 02 October 2015 (has links)
No description available.
10

Positional Cloning of Disease Causing Genes : A Genetic Study of Obesity, Ichthyosis Prematurity Syndrome and Meniere's Disease

Klar, Joakim January 2005 (has links)
<p>Positional cloning is a method to identify genes from their position in the genome without prior knowledge about function. We used this approach to investigate the basis for three distinct genetic disorders; Obesity, Ichthyosis Prematurity Syndrome and Meniere's disease.</p><p>Obesity appears when energy intake exceeds energy expenditure which leads to an abnormal accumulation of fat in the adipocyte tissue. We have studied a family with a balanced chromosomal translocation t(4;15) segregating with severe obesity. The chromosomal breakpoints create a fusion gene involving the gene for isoform 1 of RAR-related orphan receptor A (<i>RORa1</i>) which is implicated in the regulation of adipogenesis and lipoprotein metabolism. We hypothesize that the obesity in this family is caused by haploinsufficiency of this gene or a gain of function of the fusion gene.</p><p>Ichthyosis prematurity syndrome (IPS) is a rare skin disorder belonging to a group of autosomal recessive congenital ichthyosis. We have mapped the locus for IPS to chromosome 9q34. Within the IPS locus, we identified a core haplotype with a high carrier frequency among affected, which indicate a possible founder mutation for the disease. The minimal shared region in affected patients contains seven genes which are candidates for IPS.</p><p>Meniere's disease (MD) is characterised by spontaneous attacks of vertigo, fluctuating sensorineural low frequency hearing loss, aural fullness, and tinnitus. We mapped the MD locus to chromosome 12p13 using three Swedish families. The linked region is 463 kb, containing only one gene, a phosphoinositide-3-kinase (<i>PIK3C2G</i>). Involvement of phosphatidylinositol 3-kinases (PI-3K) in the intra cellular signalling cascades of cells in mammalian balance epithelia makes this gene a good candidate gene for MD.</p>

Page generated in 0.0403 seconds