• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 53
  • 47
  • 43
  • 35
  • 28
  • 26
  • 20
  • 17
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Towards fast and certified multiple-precision librairies / Vers des bibliothèques multi-précision certifiées et performantes

Popescu, Valentina 06 July 2017 (has links)
De nombreux problèmes de calcul numérique demandent parfois à effectuer des calculs très précis. L'étude desystèmes dynamiques chaotiques fournit des exemples très connus: la stabilité du système solaire ou l’itération à longterme de l'attracteur de Lorenz qui constitue un des premiers modèles de prédiction de l'évolution météorologique. Ons'intéresse aussi aux problèmes d'optimisation semi-définie positive mal-posés qui apparaissent dans la chimie oul'informatique quantique.Pour tenter de résoudre ces problèmes avec des ordinateurs, chaque opération arithmétique de base (addition,multiplication, division, racine carrée) demande une plus grande précision que celle offerte par les systèmes usuels(binary32 and binary64). Il existe des logiciels «multi-précision» qui permettent de manipuler des nombres avec unetrès grande précision, mais leur généralité (ils sont capables de manipuler des nombres de millions de chiffres) empêched’atteindre de hautes performances. L’objectif majeur de cette thèse a été de développer un nouveau logiciel à la foissuffisamment précis, rapide et sûr : on calcule avec quelques dizaines de chiffres (quelques centaines de bits) deprécision, sur des architectures hautement parallèles comme les processeurs graphiques et on démontre des bornesd'erreur afin d'être capables d’obtenir des résultats certains. / Many numerical problems require some very accurate computations. Examples can be found in the field ofdynamical systems, like the long-term stability of the solar system or the long-term iteration of the Lorenz attractor thatis one of the first models used for meteorological predictions. We are also interested in ill-posed semi-definite positiveoptimization problems that appear in quantum chemistry or quantum information.In order to tackle these problems using computers, every basic arithmetic operation (addition, multiplication,division, square root) requires more precision than the ones offered by common processors (binary32 and binary64).There exist multiple-precision libraries that allow the manipulation of very high precision numbers, but their generality(they are able to handle numbers with millions of digits) is quite a heavy alternative when high performance is needed.The major objective of this thesis was to design and develop a new arithmetic library that offers sufficient precision, isfast and also certified. We offer accuracy up to a few tens of digits (a few hundred bits) on both common CPU processorsand on highly parallel architectures, such as graphical cards (GPUs). We ensure the results obtained by providing thealgorithms with correctness and error bound proofs.
82

Iterative tensor factorization based on Krylov subspace-type methods with applications to image processing

UGWU, UGOCHUKWU OBINNA 06 October 2021 (has links)
No description available.
83

The impact of a curious type of smoothness conditions on convergence rates in l1-regularization

Bot, Radu Ioan, Hofmann, Bernd January 2013 (has links)
Tikhonov-type regularization of linear and nonlinear ill-posed problems in abstract spaces under sparsity constraints gained relevant attention in the past years. Since under some weak assumptions all regularized solutions are sparse if the l1-norm is used as penalty term, the l1-regularization was studied by numerous authors although the non-reflexivity of the Banach space l1 and the fact that such penalty functional is not strictly convex lead to serious difficulties. We consider the case that the sparsity assumption is narrowly missed. This means that the solutions may have an infinite number of nonzero but fast decaying components. For that case we formulate and prove convergence rates results for the l1-regularization of nonlinear operator equations. In this context, we outline the situations of Hölder rates and of an exponential decay of the solution components.
84

Beiträge zur Regularisierung inverser Probleme und zur bedingten Stabilität bei partiellen Differentialgleichungen

Shao, Yuanyuan 17 January 2013 (has links) (PDF)
Wir betrachten die lineare inverse Probleme mit gestörter rechter Seite und gestörtem Operator in Hilberträumen, die inkorrekt sind. Um die Auswirkung der Inkorrektheit zu verringen, müssen spezielle Lösungsmethode angewendet werden, hier nutzen wir die sogenannte Tikhonov Regularisierungsmethode. Die Regularisierungsparameter wählen wir aus das verallgemeinerte Defektprinzip. Eine typische numerische Methode zur Lösen der nichtlinearen äquivalenten Defektgleichung ist Newtonverfahren. Wir schreiben einen Algorithmus, die global und monoton konvergent für beliebige Startwerte garantiert. Um die Stabilität zu garantieren, benutzen wir die Glattheit der Lösung, dann erhalten wir eine sogenannte bedingte Stabilität. Wir demonstrieren die sogenannte Interpolationsmethode zur Herleitung von bedingten Stabilitätsabschätzungen bei inversen Problemen für partielle Differentialgleichungen.
85

Better imaging for landmine detection : an exploration of 3D full-wave inversion for ground-penetrating radar

Watson, Francis Maurice January 2016 (has links)
Humanitarian clearance of minefields is most often carried out by hand, conventionally using a a metal detector and a probe. Detection is a very slow process, as every piece of detected metal must treated as if it were a landmine and carefully probed and excavated, while many of them are not. The process can be safely sped up by use of Ground-Penetrating Radar (GPR) to image the subsurface, to verify metal detection results and safely ignore any objects which could not possibly be a landmine. In this thesis, we explore the possibility of using Full Wave Inversion (FWI) to improve GPR imaging for landmine detection. Posing the imaging task as FWI means solving the large-scale, non-linear and ill-posed optimisation problem of determining the physical parameters of the subsurface (such as electrical permittivity) which would best reproduce the data. This thesis begins by giving an overview of all the mathematical and implementational aspects of FWI, so as to provide an informative text for both mathematicians (perhaps already familiar with other inverse problems) wanting to contribute to the mine detection problem, as well as a wider engineering audience (perhaps already working on GPR or mine detection) interested in the mathematical study of inverse problems and FWI.We present the first numerical 3D FWI results for GPR, and consider only surface measurements from small-scale arrays as these are suitable for our application. The FWI problem requires an accurate forward model to simulate GPR data, for which we use a hybrid finite-element boundary-integral solver utilising first order curl-conforming N\'d\'{e}lec (edge) elements. We present a novel `line search' type algorithm which prioritises inversion of some target parameters in a region of interest (ROI), with the update outside of the area defined implicitly as a function of the target parameters. This is particularly applicable to the mine detection problem, in which we wish to know more about some detected metallic objects, but are not interested in the surrounding medium. We may need to resolve the surrounding area though, in order to account for the target being obscured and multiple scattering in a highly cluttered subsurface. We focus particularly on spatial sensitivity of the inverse problem, using both a singular value decomposition to analyse the Jacobian matrix, as well as an asymptotic expansion involving polarization tensors describing the perturbation of electric field due to small objects. The latter allows us to extend the current theory of sensitivity in for acoustic FWI, based on the Born approximation, to better understand how polarization plays a role in the 3D electromagnetic inverse problem. Based on this asymptotic approximation, we derive a novel approximation to the diagonals of the Hessian matrix which can be used to pre-condition the GPR FWI problem.
86

Beiträge zur Regularisierung inverser Probleme und zur bedingten Stabilität bei partiellen Differentialgleichungen

Shao, Yuanyuan 14 January 2013 (has links)
Wir betrachten die lineare inverse Probleme mit gestörter rechter Seite und gestörtem Operator in Hilberträumen, die inkorrekt sind. Um die Auswirkung der Inkorrektheit zu verringen, müssen spezielle Lösungsmethode angewendet werden, hier nutzen wir die sogenannte Tikhonov Regularisierungsmethode. Die Regularisierungsparameter wählen wir aus das verallgemeinerte Defektprinzip. Eine typische numerische Methode zur Lösen der nichtlinearen äquivalenten Defektgleichung ist Newtonverfahren. Wir schreiben einen Algorithmus, die global und monoton konvergent für beliebige Startwerte garantiert. Um die Stabilität zu garantieren, benutzen wir die Glattheit der Lösung, dann erhalten wir eine sogenannte bedingte Stabilität. Wir demonstrieren die sogenannte Interpolationsmethode zur Herleitung von bedingten Stabilitätsabschätzungen bei inversen Problemen für partielle Differentialgleichungen.

Page generated in 0.0597 seconds