• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 57
  • 57
  • 57
  • 25
  • 17
  • 16
  • 14
  • 13
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

High Dynamic Range Panoramic Imaging with Scene Motion

Silk, Simon January 2011 (has links)
Real-world radiance values can range over eight orders of magnitude from starlight to direct sunlight but few digital cameras capture more than three orders in a single Low Dynamic Range (LDR) image. We approach this problem using established High Dynamic Range (HDR) techniques in which multiple images are captured with different exposure times so that all portions of the scene are correctly exposed at least once. These images are then combined to create an HDR image capturing the full range of the scene. HDR capture introduces new challenges; movement in the scene creates faded copies of moving objects, referred to as ghosts. Many techniques have been introduced to handle ghosting, but typically they either address specific types of ghosting, or are computationally very expensive. We address ghosting by first detecting moving objects, then reducing their contribution to the final composite on a frame-by-frame basis. The detection of motion is addressed by performing change detection on exposure-normalized images. Additional special cases are developed based on a priori knowledge of the changing exposures; for example, if exposure is increasing every shot, then any decrease in intensity in the LDR images is a strong indicator of motion. Recent Superpixel over-segmentation techniques are used to refine the detection. We also propose a novel solution for areas that see motion throughout the capture, such as foliage blowing in the wind. Such areas are detected as always moving, and are replaced with information from a single input image, and the replacement of corrupted regions can be tailored to the scenario. We present our approach in the context of a panoramic tele-presence system. Tele-presence systems allow a user to experience a remote environment, aiming to create a realistic sense of "being there" and such a system should therefore provide a high quality visual rendition of the environment. Furthermore, panoramas, by virtue of capturing a greater proportion of a real-world scene, are often exposed to a greater dynamic range than standard photographs. Both facets of this system therefore stand to benefit from HDR imaging techniques. We demonstrate the success of our approach on multiple challenging ghosting scenarios, and compare our results with state-of-the-art methods previously proposed. We also demonstrate computational savings over these methods.
52

Interactive Mesostructures

Nykl, Scott L. January 2013 (has links)
No description available.
53

Controllable 3D Effects Synthesis in Image Editing

Yichen Sheng (18184378) 15 April 2024 (has links)
<p dir="ltr">3D effect synthesis is crucial in image editing to enhance realism or visual appeal. Unlike classical graphics rendering, which relies on complete 3D geometries, 3D effect synthesis in im- age editing operates solely with 2D images as inputs. This shift presents significant challenges, primarily addressed by data-driven methods that learn to synthesize 3D effects in an end-to-end manner. However, these methods face limitations in the diversity of 3D effects they can produce and lack user control. For instance, existing shadow generation networks are restricted to produc- ing hard shadows without offering any user input for customization.</p><p dir="ltr">In this dissertation, we tackle the research question: <i>how can we synthesize controllable and realistic 3D effects in image editing when only 2D information is available? </i>Our investigation leads to four contributions. First, we introduce a neural network designed to create realistic soft shadows from an image cutout and a user-specified environmental light map. This approach is the first attempt in utilizing neural network for realistic soft shadow rendering in real-time. Second, we develop a novel 2.5D representation Pixel Height, tailored for the nuances of image editing. This representation not only forms the foundation of a new soft shadow rendering pipeline that provides intuitive user control, but also generalizes the soft shadow receivers to be general shadow receivers. Third, we present the mathematical relationship between the Pixel Height representation and 3D space. This connection facilitates the reconstruction of normals or depth from 2D scenes, broadening the scope for synthesizing comprehensive 3D lighting effects such as reflections and refractions. A 3D-aware buffer channels are also proposed to improve the synthesized soft shadow quality. Lastly, we introduce Dr.Bokeh, a differentiable bokeh renderer that extends traditional bokeh effect algorithms with better occlusion modeling to correct flaws existed in existing methods. With the more precise lens modeling, we show that Dr.Bokeh not only achieves the state-of-the-art bokeh rendering quality, but also pushes the boundary of depth-from-defocus problem.</p><p dir="ltr">Our work in controllable 3D effect synthesis represents a pioneering effort in image editing, laying the groundwork for future lighting effect synthesis in various image editing applications. Moreover, the improvements to filtering-based bokeh rendering could significantly enhance com- mercial products, such as the portrait mode feature on smartphones.</p>
54

Advances in Modelling, Animation and Rendering

Vince, J.A., Earnshaw, Rae A. January 2002 (has links)
No / This volume contains the papers presented at Computer Graphics International 2002, in July, at the University of Bradford, UK. These papers represent original research in computer graphics from around the world.
55

Occlusion Management in Conventional and Head-Mounted Display Visualization through the Relaxation of the Single Viewpoint/Timepoint Constraint

Meng-Lin Wu (6916283) 16 August 2019 (has links)
<div>In conventional computer graphics and visualization, images are synthesized following the planar pinhole camera (PPC) model. The PPC approximates physical imaging devices such as cameras and the human eye, which sample the scene with linear rays that originate from a single viewpoint, i.e. the pinhole. In addition, the PPC takes a snapshot of the scene, sampling it at a single instant in time, or timepoint, for each image. Images synthesized with these single viewpoint and single timepoint constraints are familiar to the user, as they emulate images captured with cameras or perceived by the human visual system. However, visualization using the PPC model suffers from the limitation of occlusion, when a region of interest (ROI) is not visible due to obstruction by other data. The conventional solution to the occlusion problem is to rely on the user to change the view interactively to gain line of sight to the scene ROIs. This approach of sequential navigation has the shortcomings of (1) inefficiency, as navigation is wasted when circumventing an occluder does not reveal an ROI, (2) inefficacy, as a moving or a transient ROI can hide or disappear before the user reaches it, or as scene understanding requires visualizing multiple distant ROIs in parallel, and (3) user confusion, as back-and-forth navigation for systematic scene exploration can hinder spatio-temporal awareness.</div><div><br></div><div>In this thesis we propose a novel paradigm for handling occlusions in visualization based on generalizing an image to incorporate samples from multiple viewpoints and multiple timepoints. The image generalization is implemented at camera model level, by removing the same timepoint restriction, and by removing the linear ray restriction, allowing for curved rays that are routed around occluders to reach distant ROIs. The paradigm offers the opportunity to greatly increase the information bandwidth of images, which we have explored in the context of both desktop and head-mounted display visualization, as needed in virtual and augmented reality applications. The challenges of multi-viewpoint multi-timepoint visualization are (1) routing the non-linear rays to find all ROIs or to reach all known ROIs, (2) making the generalized image easy to parse by enforcing spatial and temporal continuity and non-redundancy, (3) rendering the generalized images quickly as required by interactive applications, and (4) developing algorithms and user interfaces for the intuitive navigation of the compound cameras with tens of degrees of freedom. We have addressed these challenges (1) by developing a multiperspective visualization framework based on a hierarchical camera model with PPC and non-PPC leafs, (2) by routing multiple inflection point rays with direction coherence, which enforces visualization continuity, and without intersection, which enforces non-redundancy, (3) by designing our hierarchical camera model to provide closed-form projection, which enables porting generalized image rendering to the traditional and highly-efficient projection followed by rasterization pipeline implemented by graphics hardware, and (4) by devising naturalistic user interfaces based on tracked head-mounted displays that allow deploying and retracting the additional perspectives intuitively and without simulator sickness.</div>
56

Offset Surface Light Fields

Ang, Jason January 2003 (has links)
For producing realistic images, reflection is an important visual effect. Reflections of the environment are important not only for highly reflective objects, such as mirrors, but also for more common objects such as brushed metals and glossy plastics. Generating these reflections accurately at real-time rates for interactive applications, however, is a difficult problem. Previous works in this area have made assumptions that sacrifice accuracy in order to preserve interactivity. I will present an algorithm that tries to handle reflection accurately in the general case for real-time rendering. The algorithm uses a database of prerendered environment maps to render both the original object itself and an additional bidirectional reflection distribution function (BRDF). The algorithm performs image-based rendering in reflection space in order to achieve accurate results. It also uses graphics processing unit (GPU) features to accelerate rendering.
57

Offset Surface Light Fields

Ang, Jason January 2003 (has links)
For producing realistic images, reflection is an important visual effect. Reflections of the environment are important not only for highly reflective objects, such as mirrors, but also for more common objects such as brushed metals and glossy plastics. Generating these reflections accurately at real-time rates for interactive applications, however, is a difficult problem. Previous works in this area have made assumptions that sacrifice accuracy in order to preserve interactivity. I will present an algorithm that tries to handle reflection accurately in the general case for real-time rendering. The algorithm uses a database of prerendered environment maps to render both the original object itself and an additional bidirectional reflection distribution function (BRDF). The algorithm performs image-based rendering in reflection space in order to achieve accurate results. It also uses graphics processing unit (GPU) features to accelerate rendering.

Page generated in 0.1302 seconds