• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classificação de imagens de fluorescência do citoesqueleto através de técnicas em processamento de imagens / Classification of cytoskeleton in fluorescence images with image analysis techniques

Quispe, Filomen Incahuanaco 14 September 2017 (has links)
O citoesqueleto é a estrutura celular mais importante em células eucariotas e é responsável por manter a forma da célula e as junções celulares, auxiliando nos movimentos celulares. Esta é composta de filamentos de Actina, Microtúbulos e filamentos intermediários. Recentemente, a análise de duas dessas estruturas tornaram-se importantes, pois é possível obter micrografias usando microscópios de alta resolução, que contém microscopia de fluorescência, em combinação com métodos complexos de aplicação de substâncias de contraste para rotulagem e posterior análises visuais. A combinação dessas técnicas, entretanto, limita-se a ser descritiva e subjetiva. Neste trabalho, são avaliadas cinco técnicas de análise de imagens, as quais são: Bag of Visual Words (BoVW), Local Binary Local (LBP), Textons baseados em Discrete Fourier Transform (TDFT), Textons baseados em Gabor Filter Banks (TGFB) e Textons baseados em Complex Networks (TCN) sobre o conjunto de dados 2D Hela e FDIG Olympus. Experimentos extensivos foram conduzidos em ambos os conjuntos de dados, e seus resultados podem servir de base para futuras pesquisas como análises do citoesqueleto em imagens de microscopia fluorescente. Neste trabalho, é apresentada uma comparação quantitativa e qualitativa dos métodos acima mencionados para entender o comportamento desses métodos e propriedades dos microfilamentos de actina (MA) e Microtúbulos (MT) em ambos os conjuntos de dados. Os resultados obtidos evidenciam que é possível classificar o conjunto de dados da FDIG Olympus com uma precisão de até 90:07% e 98:94% para 2D Hela, além de obter 86:05% e 96:84%, respectivamente, de precisão, usando teoria de redes complexas. / The cytoskeleton is the most important cellular structure in eukaryotic cells and is responsible for maintaining the shape of the cell and cellular junctions, aiding in cell movements. This is composed of filaments of Actin, Microtubules and intermediate filaments. Recently, the analysis of two of these structures has become important because it is possible to obtain micrographs using microscopes of high resolution and fluorescence technology, in combination with complex methods of application of substances of contrast for labeling and later visual analysis. The use of these techniques, however, is limited to being descriptive and subjective. In this work, we evaluate some of the most popular image analysis techniques such as Bag of Visual Words (BoVW), Local Binary Pattern (LBP), Textons based on Discrete Fourier Transform(TDFT) , Gabor Filter banks (TGFB), and approaches based on Complex Networks theory (TCN) over the famous dataset 2D Hela and FDIG Olympus. Extensive experiments were conducted on both datasets in which their results can serve as a baseline for future research with cytoskeleton classification in microscopy fluorescence images. In this work, we present the quantitative and qualitative comparison of above mentioned methods for better understand the behavior of these methods and the properties of Actin microfilaments (MA) and Microtubules (MT) on both datasets. The results showed that it is possible to classify the FDIG Olympus data set with accuracy of up to 90:07% and 98:94% for 2D Hela, in addition to reaching 86:05% and 96:84% respectively, using complex network theory.
2

Computational vision applied to the segmentation and morphometric characterization of the sciatic nerve in microscopic images

Dias, Diogo Machado Carneiro January 2010 (has links)
Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 2011
3

Classificação de imagens de fluorescência do citoesqueleto através de técnicas em processamento de imagens / Classification of cytoskeleton in fluorescence images with image analysis techniques

Filomen Incahuanaco Quispe 14 September 2017 (has links)
O citoesqueleto é a estrutura celular mais importante em células eucariotas e é responsável por manter a forma da célula e as junções celulares, auxiliando nos movimentos celulares. Esta é composta de filamentos de Actina, Microtúbulos e filamentos intermediários. Recentemente, a análise de duas dessas estruturas tornaram-se importantes, pois é possível obter micrografias usando microscópios de alta resolução, que contém microscopia de fluorescência, em combinação com métodos complexos de aplicação de substâncias de contraste para rotulagem e posterior análises visuais. A combinação dessas técnicas, entretanto, limita-se a ser descritiva e subjetiva. Neste trabalho, são avaliadas cinco técnicas de análise de imagens, as quais são: Bag of Visual Words (BoVW), Local Binary Local (LBP), Textons baseados em Discrete Fourier Transform (TDFT), Textons baseados em Gabor Filter Banks (TGFB) e Textons baseados em Complex Networks (TCN) sobre o conjunto de dados 2D Hela e FDIG Olympus. Experimentos extensivos foram conduzidos em ambos os conjuntos de dados, e seus resultados podem servir de base para futuras pesquisas como análises do citoesqueleto em imagens de microscopia fluorescente. Neste trabalho, é apresentada uma comparação quantitativa e qualitativa dos métodos acima mencionados para entender o comportamento desses métodos e propriedades dos microfilamentos de actina (MA) e Microtúbulos (MT) em ambos os conjuntos de dados. Os resultados obtidos evidenciam que é possível classificar o conjunto de dados da FDIG Olympus com uma precisão de até 90:07% e 98:94% para 2D Hela, além de obter 86:05% e 96:84%, respectivamente, de precisão, usando teoria de redes complexas. / The cytoskeleton is the most important cellular structure in eukaryotic cells and is responsible for maintaining the shape of the cell and cellular junctions, aiding in cell movements. This is composed of filaments of Actin, Microtubules and intermediate filaments. Recently, the analysis of two of these structures has become important because it is possible to obtain micrographs using microscopes of high resolution and fluorescence technology, in combination with complex methods of application of substances of contrast for labeling and later visual analysis. The use of these techniques, however, is limited to being descriptive and subjective. In this work, we evaluate some of the most popular image analysis techniques such as Bag of Visual Words (BoVW), Local Binary Pattern (LBP), Textons based on Discrete Fourier Transform(TDFT) , Gabor Filter banks (TGFB), and approaches based on Complex Networks theory (TCN) over the famous dataset 2D Hela and FDIG Olympus. Extensive experiments were conducted on both datasets in which their results can serve as a baseline for future research with cytoskeleton classification in microscopy fluorescence images. In this work, we present the quantitative and qualitative comparison of above mentioned methods for better understand the behavior of these methods and the properties of Actin microfilaments (MA) and Microtubules (MT) on both datasets. The results showed that it is possible to classify the FDIG Olympus data set with accuracy of up to 90:07% and 98:94% for 2D Hela, in addition to reaching 86:05% and 96:84% respectively, using complex network theory.
4

Detecção de ovos de S. mansoni a partir da detecção de seus contornos / Schistosoma mansoni egg detection from contours detection

Huaynalaya, Edwin Delgado 25 April 2012 (has links)
Schistosoma mansoni é o parasita causador da esquistossomose mansônica que, de acordo com o Ministério da Saúde do Brasil, afeta atualmente vários milhões de pessoas no país. Uma das formas de diagnóstico da esquistossomose é a detecção de ovos do parasita através da análise de lâminas microscópicas com material fecal. Esta tarefa é extremamente cansativa, principalmente nos casos de baixa endemicidade, pois a quantidade de ovos é muito pequena. Nesses casos, uma abordagem computacional para auxílio na detecção de ovos facilitaria o trabalho de diagnóstico. Os ovos têm formato ovalado, possuem uma membrana translúcida, apresentam uma espícula e sua cor é ligeiramente amarelada. Porém nem todas essas características são observadas em todos os ovos e algumas delas são visíveis apenas com uma ampliação adequada. Além disso, o aspecto visual do material fecal varia muito de indivíduo para indivíduo em termos de cor e presença de diversos artefatos (tais como partículas que não são desintegradas pelo sistema digestivo), tornando difícil a tarefa de detecção dos ovos. Neste trabalho investigamos, em particular, o problema de detecção das linhas que contornam a borda de vários dos ovos. Propomos um método composto por duas fases. A primeira fase consiste na detecção de estruturas do tipo linha usando operadores morfológicos. A detecção de linhas é dividida em três etapas principais: (i) realce de linhas, (ii) detecção de linhas, e (iii) refinamento do resultado para eliminar segmentos de linhas que não são de interesse. O resultado dessa fase é um conjunto de segmentos de linhas. A segunda fase consiste na detecção de subconjuntos de segmentos de linha dispostos em formato elíptico, usando um algoritmo baseado na transformada Hough. As elipses detectadas são fortes candidatas a contorno de ovos de S. mansoni. Resultados experimentais mostram que a abordagem proposta pode ser útil para compor um sistema de auxílio à detecção dos ovos. / Schistosoma mansoni is one of the parasites which causes schistosomiasis. According to the Brazilian Ministry of Health, several million people in the country are currently affected by schistosomiasis. One way of diagnosing it is by egg identification in stool. This task is extremely time-consuming and tiring, especially in cases of low endemicity, when only few eggs are present. In such cases, a computational approach to help the detection of eggs would greatly facilitate the diagnostic task. Schistosome eggs present oval shape, have a translucent membrane and a spike, and their color is slightly yellowish. However, not all these features are observed in every egg and some of them are visible only with an adequate microscopic magnification. Furthermore, the visual aspect of the fecal material varies widely from person to person in terms of color and presence of different artifacts (such as particles which are not disintegrated by the digestive system), making it difficult to detect the eggs. In this work we investigate the problem of detecting lines which delimit the contour of the eggs. We propose a method comprising two steps. The first phase consists in detecting line-like structures using morphological operators. This line detection phase is divided into three steps: (i) line enhancement, (ii) line detection, and (iii) result refinement in order to eliminate line segments that are not of interest. The output of this phase is a set of line segments. The second phase consists in detecting subsets of line segments arranged in an elliptical shape, using an algorithm based on the Hough transform. Detected ellipses are strong candidates to contour of S. mansoni eggs. Experimental results show that the proposed approach has potential to be effectively used as a component in a computer system to help egg detection.
5

Detecção de ovos de S. mansoni a partir da detecção de seus contornos / Schistosoma mansoni egg detection from contours detection

Edwin Delgado Huaynalaya 25 April 2012 (has links)
Schistosoma mansoni é o parasita causador da esquistossomose mansônica que, de acordo com o Ministério da Saúde do Brasil, afeta atualmente vários milhões de pessoas no país. Uma das formas de diagnóstico da esquistossomose é a detecção de ovos do parasita através da análise de lâminas microscópicas com material fecal. Esta tarefa é extremamente cansativa, principalmente nos casos de baixa endemicidade, pois a quantidade de ovos é muito pequena. Nesses casos, uma abordagem computacional para auxílio na detecção de ovos facilitaria o trabalho de diagnóstico. Os ovos têm formato ovalado, possuem uma membrana translúcida, apresentam uma espícula e sua cor é ligeiramente amarelada. Porém nem todas essas características são observadas em todos os ovos e algumas delas são visíveis apenas com uma ampliação adequada. Além disso, o aspecto visual do material fecal varia muito de indivíduo para indivíduo em termos de cor e presença de diversos artefatos (tais como partículas que não são desintegradas pelo sistema digestivo), tornando difícil a tarefa de detecção dos ovos. Neste trabalho investigamos, em particular, o problema de detecção das linhas que contornam a borda de vários dos ovos. Propomos um método composto por duas fases. A primeira fase consiste na detecção de estruturas do tipo linha usando operadores morfológicos. A detecção de linhas é dividida em três etapas principais: (i) realce de linhas, (ii) detecção de linhas, e (iii) refinamento do resultado para eliminar segmentos de linhas que não são de interesse. O resultado dessa fase é um conjunto de segmentos de linhas. A segunda fase consiste na detecção de subconjuntos de segmentos de linha dispostos em formato elíptico, usando um algoritmo baseado na transformada Hough. As elipses detectadas são fortes candidatas a contorno de ovos de S. mansoni. Resultados experimentais mostram que a abordagem proposta pode ser útil para compor um sistema de auxílio à detecção dos ovos. / Schistosoma mansoni is one of the parasites which causes schistosomiasis. According to the Brazilian Ministry of Health, several million people in the country are currently affected by schistosomiasis. One way of diagnosing it is by egg identification in stool. This task is extremely time-consuming and tiring, especially in cases of low endemicity, when only few eggs are present. In such cases, a computational approach to help the detection of eggs would greatly facilitate the diagnostic task. Schistosome eggs present oval shape, have a translucent membrane and a spike, and their color is slightly yellowish. However, not all these features are observed in every egg and some of them are visible only with an adequate microscopic magnification. Furthermore, the visual aspect of the fecal material varies widely from person to person in terms of color and presence of different artifacts (such as particles which are not disintegrated by the digestive system), making it difficult to detect the eggs. In this work we investigate the problem of detecting lines which delimit the contour of the eggs. We propose a method comprising two steps. The first phase consists in detecting line-like structures using morphological operators. This line detection phase is divided into three steps: (i) line enhancement, (ii) line detection, and (iii) result refinement in order to eliminate line segments that are not of interest. The output of this phase is a set of line segments. The second phase consists in detecting subsets of line segments arranged in an elliptical shape, using an algorithm based on the Hough transform. Detected ellipses are strong candidates to contour of S. mansoni eggs. Experimental results show that the proposed approach has potential to be effectively used as a component in a computer system to help egg detection.

Page generated in 0.0931 seconds