• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of the cross-hole radio imaging method in dectecting geological anomalies, MacLennan township, Sudbury Ontario

Sharif, Ladan Karimi 30 October 2013 (has links)
The occurrence of conductive sulphide in an otherwise highly-resistive host rock is the ideal situation for exploring using high-frequency electromagnetic methods. The FARA radio imaging (RIM) system was deployed to explore the rock properties between two boreholes MAC104 and MAC100G, which are about 182 m apart, on the Nickel Rim South property (MacLennan Township) 22 km northeast of Sudbury. Tomographic data were collected and processed at 625 kHz and 1250 kHz. One data set has the transmitter in MAC100G and the receiver in MAC104; the other “reciprocal” data set has the transmitter in MAC104 and the receiver in MAC100G. The amplitude data were reduced, edited, and processed to generate tomograms employing the SIRT algorithm. Separate tomograms were created for the reciprocal data sets in the ImageWin software. A sensitivity analysis was conducted to assess the influence that perturbations in the ImageWin processing parameters have on the resulting tomograms. The sensitivity study of the tomograms along with the information obtained from the value of fit analysis can be used to select appropriate processing parameters. Finally, the two reciprocal sets of conductivity values were averaged and imported into Geosoft to create a final tomogram for the panel. The resistivity values of the studied zone obtained from the FARA modeling package agree fairly well with the conductivity data set generated by the ImageWin modeling package when compared using the Geosoft and GOCAD visualization software. Differences between the two tomograms are attributed to the different solver methods employed by FARA and ImageWin and the statistical analysis used for averaging the attenuation value over ray paths. Furthermore, it is shown that the tomographic results are consistent with the location of conductive zones that were identified using down-hole geophysical logging. The main focus of the project is to understand how the radio imaging (RIM) data is processed with the ImageWin software to construct an attenuation tomogram. This research showed that both tomograms created by ImageWin and FARA illustrate the same pattern with two conductive zones at the same depth; however, the values of conductivity are slightly different. The FARA resistivity values obtained for the upper zone is a factor of two lower than the resistivity calculated by ImageWin. The resistivity values obtained for the lower zone using the FARA processing is a factor of eight lower than the resistivity calculated by ImageWin. Also, there is a slight discrepancy in the orientation of the upper and lower zones on the two tomographic images generated using the two processing packages. In the tomograms generated by FARA software both upper and lower zones are continuous linear zones from one hole to the other with dips from MAC104 towards MAC100G, whereas in the tomograms created by ImageWin the upper and lower zones are less linear and do not have obvious dips.
2

Rock property measurements using image processing. / Ballastegenskaper och kvalitetsbestämning med bildanalys.

Lindström, Håkan January 2011 (has links)
Shape and size of rocks are important physical characteristics of aggregates used in engineering and for interpretation of the genesis of naturally occurring sediment. Several image processing programs are available for measure the size and shape of various types of objects. The accuracy and reproducibility of results of a new imaging method and new matlab based 3D imaging program has been studied. 3D results are obtained by coupling two images of particles one of their largest and one of the smallest projected areas. The accuracy of results depends on the focal length used for imaging as well as the positioning of particles in the view field.
3

Metoda iontového zobrazování ve fotodisociačních experimentech v molekulových paprscích / Ion imaging method in molecular beam photodissociation experiments

Košťál, Pavel January 2015 (has links)
During my master thesis I became familiar with ion imaging and velocity map imaging (VMI) techniques in experiments with molecular beam. My major contribution was writing a computer program for data acquisition and pre-analysis. The program features initial filtering of the data, improving significantly signal to noise ratio. Non-trivial effort was required to make the program compatible with three different CCD cameras implemented on different experiments in the laboratory. I have also simulated ion trajectories in VMI and wrote a program code to imulate VMI image distortions due to imperfections in apparatus geometry. These programs will be useful in aligning and tuning the apparatus. Finally, I wrote a program for data manipulation and conversion to formats compatible with various data analysis programs available in the laboratory. All the above programs I have tested by measurements of 243 nm photodissociation of HBr molecules.
4

Imagerie hyperspectrale en champ proche optique : développement et applications à la nanophotonique / Hyperspectral near-field imaging : development and applications to nanophotonics devices

Dellinger, Jean 05 April 2013 (has links)
La microscopie en champ proche optique permet d'analyser les phénomènes optiques avec une résolution spatiale sublongueur d'onde comme par exemple la localisation et la propagation de la lumière dans des cristaux photoniques. D'une manière générale, les méthodes de microscopie en champ proche optique reposent sur le positionnement à l'échelle nanométrique d'une sonde locale à proximité de l'échantillon à analyser, puis sur la détection du signal diffusé et collecté lors du balayage de la sonde. En fonction du type de détection optique mise en oeuvre ou du type de sonde utilisée, les grandeurs physiques communément accessibles par ces méthodes sont les distributions spatiales de l'amplitude et de la phase ou de l'intensité des composantes électriques ou magnétiques du champ sondé.Ce travail de thèse est consacré à la mise en place d'une détection hyperstectrale en champ proche optique dans le but de comprendre et de caractériser, à des échelles sublongueurs d'onde, les propriétés spectrales et spatiales de systèmes optiques miniaturisés. L'imagerie hyperstectrale fournit en une seule acquisition, une série d'image à chaque longueur d'onde dans les gammes spectrales visibles, infrarouges et aux longueurs d'onde des télécommunications optiques. Cette nouvelle technique d'imagerie a permis l'observation, sur une large bande spectrale, de phénomènes électromagnétiques dépendant de la longueur d'onde tels que les effets superprisme et mirage dans les cristaux photoniques et la mise en forme de faisceaux de Bessel plasmoniques / The scanning near-field optical microscopy (SNOM) is used to analyze optical phenomena at the sub-wavelength scale such as light localization and propagation in photonic crystals or plasmonic devices. In any case, SNOM experiments rely on the positioning of a local probe in the optical near field of a given structure and on the detection of the surrounding evanescent waves. Depending on the nature of the probe or on the optical detection method, the detected physical properties are the spatial distributions of the amplitude and phase or the intensity of the electric and magnetic components of the probed field. We present here the implementation of an innovative hyperspectral near-field imaging method which aims to detect both spectral and spatial properties of an optical nanosystem at the subwavelength scale. The presented method provides a batch of images over a broad spectral range at visible; near-infrared and telecommunication wavelengths. Using this technique, we report here the near-field observations through the spectrum of the emblematic electromagnetic phenomena involved in photonic crystals and plasmonics such as light waveguiding, trapping or beam shaping
5

Examination of Subungual Hematomas and Subungual Melanocytic Lesions by Using Optical Coherence Tomography and Dermoscopy

Hobelsberger, Sarah, Laske, Jörg, Aschoff, Roland, Beissert, Stefan 16 May 2024 (has links)
Introduction: Examination of subungual pigmented lesions is sometimes a diagnostic challenge for clinicians. Objectives: The study was aimed to investigate characteristic patterns in optical coherence tomography (OCT) of subungual hematomas and determine distinctive features that can differentiate them from subungual melanocytic lesions. Methods: VivoSight® (Michelson Diagnostics, Maidstone, UK) was used to examine 71 subungual hematomas and 11 subungual melanocytic lesions in 69 patients (18 female and 51 male patients). Results: On OCT, bleeding was related to sharply defined black sickle-shaped (p < 0.001) or globular regions (not significant [ns]) with a hyperreflective margin (0.002), a grey center (0.013), hyperreflective lines in the area (ns) or periphery (p = 0.031), peripheral fading (p = 0.029), and red dots in the area (p = 0.001). In the 1 case of melanoma in situ examined, we found curved vessels with irregular sizes and distribution on the dermis of the nailbed, while subungual hematomas and subungual benign nevi presented as clustered red dots and/or regularly distributed curved vessels. Conclusion: Our findings indicate that the use of OCT in addition to dermoscopy provides high-resolution optical imaging information for the diagnosis of subungual hematoma and facilitates the differential diagnosis of subungual hematomas and subungual melanocytic lesions.
6

Small Angle Sensing/Measurement Using 'Pattern Imaging' Method - Few Investigations

Suguna Sree, N 04 1900 (has links)
The present thesis concerns with a few investigations on sensing/measurement of small angle rotation/tilt using Pattern Imaging Method. The methodology involves looking at the tailored-objects located adjacent to the observer (CCD camera) through a mirror and extracts the angular position of the mirror from their images by processing the latter through object specific algorithm. Its principal advantage stems from the fact that small-angle measurement can be done using ambient light which is neither collimated nor filtered for single wavelength. This makes the associated optical configuration not only simple but also robust for the said application, in comparison to currently competing technologies based on Autocollimation and Interferometry. The present thesis elaborates specifically four new Pattern-Designs proposed for tailoring the spatial-brightness of the objects. Introducing for the first time, processing algorithms based on ‘Modified Fringe-Processing Strategy’ and ‘Phase-Only-Correlation’, the investigations demonstrate enhanced performance for small angle measurement with all the proposed pattern designs. The first three designs for the pattern are evaluated for 1-D measurement through fringe processing approach while the fourth pattern design is evaluated for 2-D measurement through Phase-only-Correlation. The results of the investigations are utilized to propose, design and develop a novel optical inclinometer which can work with any of the proposed pattern designs as the object. The first three pattern-designs rely upon sinusoidal modulation of the object surface and utilize three custom developed algorithms -Algorithm-A, Algorithm-B and Algorithm-C -to extract two quantities namely wrapped phase Δαw and unwrapped phase Δαuw , from the captured images. Each of these quantities will have an associated measurement range and accuracy corresponding to any of the three pattern designs. All measurements are carried out keeping the object/camera to mirror distance constant at 250 mm. From wrapped phase measurement, all the three designs, each with pitch of 2mm for sinusoidal modulation and held at a distance of 250 mm from the mirror, have been found to facilitate reliable angle measurement over a range of 850 arc seconds with accuracy better than 1 arc second after curve fitting the experimentally obtained data. From unwrapped phase measurement, the color coded as well as BCD coded composite patterns, when tested using five bands of sinusoidal modulation (with a pitch of 2mm) and held at a distance of 250 mm from the mirror, facilitated reliable angle measurement over a larger range of nearly 10 . The 2-D angle measurement using fourth pattern-design and the Algorithm-D, facilitated measurement over a range of 10 with an accuracy of 9 arc seconds when the distance between the mirror and the pattern is held at 250 mm. A comparison of the results from the present investigation with the best performance from other investigators reveals the following. The proposed modifications in the processing algorithms as well as the pattern designs help to achieve a measurement range of 750 arc seconds with accuracy better than 1 arc second from this method, with an object pattern whose lateral size is smaller by a factor of nearly 15. Such a size reduction in the object as well as the associated mirror would help to construct angle measuring instruments that work on this method more compactly. The results of the investigation have been utilized to propose and demonstrate a novel prototype optical inclinometer which has been experimentally found to work in a range of 0.40 with accuracy nearly 6 arc seconds.

Page generated in 0.0387 seconds