• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 13
  • 9
  • 7
  • Tagged with
  • 72
  • 72
  • 72
  • 33
  • 20
  • 19
  • 19
  • 17
  • 14
  • 14
  • 10
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Topology optimization for the duct flow problems in laminar and turbulent flow regimes / 層流および乱流の内部流れを対象としたトポロジー最適化

Kubo, Seiji 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21753号 / 工博第4570号 / 新制||工||1712(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 西脇 眞二, 教授 松原 厚, 教授 黒瀬 良一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
22

Strongly-Coupled Conjugate Heat Transfer Investigation of Internal Cooling of Turbine Blades using the Immersed Boundary Method

Oh, Tae Kyung 02 July 2019 (has links)
The present thesis focuses on evaluating a conjugate heat transfer (CHT) simulation in a ribbed cooling passage with a fully developed flow assumption using LES with the immersed boundary method (IBM-LES-CHT). The IBM with the LES model (IBM-LES) and the IBM with CHT boundary condition (IBM-CHT) frameworks are validated prior to the main simulations by simulating purely convective heat transfer (iso-flux) in the ribbed duct, and a developing laminar boundary layer flow over a two-dimensional flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. As a means to overcome a large time scale disparity between the fluid and the solid regions, the use of a high artificial solid thermal diffusivity is compared to the physical diffusivity. It is shown that while the diffusivity impacts the instantaneous fluctuations in temperature, heat transfer and Nusselt numbers, it has an insignificantly small effect on the mean Nusselt number. The comparison between the IBM-LES-CHT and iso-flux simulations shows that the iso-flux case predicts higher local Nusselt numbers at the back face of the rib. Furthermore, the local Nusselt number augmentation ratio (EF) predicted by IBM-LES-CHT is compared to the body fitted grid (BFG) simulation, experiment and another LES conjugate simulation. Even though there is a mismatch between IBM-LES-CHT prediction and other studies at the front face of the rib, the area-averaged EF compares reasonably well in other regions between IBM-LES-CHT prediction and the comparative studies. / Master of Science / The present thesis focuses on the computational study of the conjugate heat transfer (CHT) investigation on the turbine internal ribbed cooling channel. Plenty of prior research on turbine internal cooling channel have been conducted by considering only the convective heat transfer at the wall, which assumes an iso-flux (constant heat flux) boundary condition at the surface. However, applying an iso-flux condition on the surface is far from the realistic heat transfer mechanism occurring in internal cooling systems. In this work, a conjugate heat transfer analysis of the cooling channel, which considers both the conduction within the solid wall and the convection at the ribbed inner wall surface, is conducted for more realistic heat transfer coefficient prediction at the inner ribbed wall. For the simulation, the computational mesh is generated by the immersed boundary method (IBM), which can ease the mesh generation by simply immersing the CAD geometry into the background volume grid. The IBM is combined with the conjugate boundary condition to simulate the internal ribbed cooling channel. The conjugate simulation is compared with the experimental data and another computational study for the validation. Even though there are some discrepancy between the IBM simulation and other comparative studies, overall results are in good agreement. From the thermal prediction comparison between the iso-flux case and the conjugate case v using the IBM, it is found that the heat transfer predicted by the conjugate case is different from the iso-flux case by more than 40 percent at the rib back face. The present study shows the potential of the IBM framework with the conjugate boundary condition for more complicated geometry, such as full turbine blade model with external and internal cooling system.
23

Computational Modeling of Intracapillary Bacteria Transport in Tumor Microvasculature

Windes, Peter 06 October 2016 (has links)
The delivery of drugs into solid tumors is not trivial due to obstructions in the tumor microenvironment. Innovative drug delivery vehicles are currently being designed to overcome this challenge. In this research, computational fluid dynamics (CFD) simulations were used to evaluate the behavior of several drug delivery vectors in tumor capillaries—specifically motile bacteria, non-motile bacteria, and nanoparticles. Red blood cells, bacteria, and nanoparticles were imposed in the flow using the immersed boundary method. A human capillary model was developed using a novel method of handling deformable red blood cells (RBC). The capillary model was validated with experimental data from the literature. A stochastic model of bacteria motility was defined based on experimentally observed run and tumble behavior. The capillary and bacteria models were combined to simulate the intracapillary transport of bacteria. Non-motile bacteria and nanoparticles of 200 nm, 300 nm, and 405 nm were also simulated in capillary flow for comparison to motile bacteria. Motile bacteria tended to swim into the plasma layer near the capillary wall, while non-motile bacteria tended to get caught in the bolus flow between the RBCs. The nanoparticles were more impacted by Brownian motion and small scale fluid fluctuations, so they did not trend toward a single region of the flow. Motile bacteria were found to have the longest residence time in a 1 mm long capillary as well as the highest average radial velocity. This suggests motile bacteria may enter the interstitium at a higher rate than non-motile bacteria or nanoparticles of diameters between 200–405 nm. / Master of Science
24

Development of general finite differences for complex geometries using immersed boundary method

Vasyliv, Yaroslav V. 07 January 2016 (has links)
In meshfree methods, partial differential equations are solved on an unstructured cloud of points distributed throughout the computational domain. In collocated meshfree methods, the differential operators are directly approximated at each grid point based on a local cloud of neighboring points. The set of neighboring nodes used to construct the local approximation is determined using a variable search radius. The variable search radius establishes an implicit nodal connectivity and hence a mesh is not required. As a result, meshfree methods have the potential flexibility to handle problem sets where the computational grid may undergo large deformations as well as where the grid may need to undergo adaptive refinement. In this work we develop the sharp interface formulation of the immersed boundary method for collocated meshfree approximations. We use the framework to implement three meshfree methods: General Finite Differences (GFD), Smoothed Particle Hydrodynamics (SPH), and Moving Least Squares (MLS). We evaluate the numerical accuracy and convergence rate of these methods by solving the 2D Poisson equation. We demonstrate that GFD is computationally more efficient than MLS and show that its accuracy is superior to a popular corrected form of SPH and comparable to MLS. We then use GFD to solve several canonic steady state fluid flow problems on meshfree grids generated using uniform and variable radii Poisson disk algorithm.
25

GPU Accelerated Study of Heat Transfer and Fluid Flow by Lattice Boltzmann Method on CUDA

Ren, Qinlong, Ren, Qinlong January 2016 (has links)
Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.
26

Simulação de fluido multifásico em imagens digitais / Simulation of multiphase fluid into digital images

Gimenes, Alex da Silva 07 April 2008 (has links)
Simulação de fluidos tem sido um dos focos principais de pesquisa em computação gráfica nos últimos anos. O interesse por tal assunto é motivado pelas aplicações na indústria cinematográfica, jogos e sistemas voltados para simulação de fenômenos físicos realísticos em tempo real. Neste trabalho atacamos um problema ainda pouco explorado pela comunidade de computação gráfica, a simulação de fluidos em imagens digitais. Adotamos uma abordagem relacionando fluidos multifásicos, onde propriedades da imagem são incorporadas às equações de Navier-Stokes a fim de permitir que objetos contidos nas imagens \"escoem\" interagindo a forças que agem no sistema / In the last years, fluid simulation has been one of the main focus in Computer Graphics. Such a reason is related to applications to film industry, games and frameworks for realtime physical problem simulations. In this work we aim at accessing a problem which is not so much explored in Computer Graphics: fluid simulation in digital images. We adopt a approach related to multiphase fluids, where properties of the image are set to the Navier-Stokes equations in order to allow that objects into the images \"flow\"in accordance to the forces in the system
27

Modelação numérica de processos de sedimentação em escoamentos turbulentos e análise da ressuspensão em canais / Numerical modeling of settling processes in turbulent flows and channel re-suspension analysis

Alamy Filho, José Eduardo 19 April 2006 (has links)
O estudo do transporte de sedimentos, partindo da estimativa de estruturas turbulentas relevantes, constituiu o principal foco deste trabalho. Assim, a equação de transporte de massa (advecção-difusão) foi aplicada em conjunto com as equações de Navier-Stokes e da continuidade filtradas. Neste contexto, houve a necessidade de uma descrição conveniente da turbulência, o que ocorreu mediante a aplicação da simulação de grandes escalas acoplada a modelos de viscosidade turbulenta sub-malha. O método de fronteira imersa foi utilizado na modelação da interface sólido/fluido, representada pela geometria de fundo dos canais. As equações de Navier-Stokes filtradas e da continuidade foram resolvidas numericamente pelo método de passos fracionados, o qual estabeleceu o almejado acoplamento entre ambas. Na discretização das equações governantes foi utilizado o método de diferenças finitas, aplicado sobre malhas deslocadas. Os esquemas explícitos de Adams-Bashforth (de segunda e quarta ordens) foram utilizados no avanço temporal das velocidades do escoamento e das concentrações de sedimentos. Uma nova formulação para a velocidade de sedimentação foi desenvolvida analiticamente, enquanto que eventuais fluxos de ressuspensão foram impostos como condição de contorno no fundo do canal. Todos os códigos computacionais, que estabeleceram as diretrizes e a lógica de cálculo, foram criados no contexto deste trabalho. Os resultados obtidos indicam que a simulação de grandes escalas, associada ao método de fronteira imersa, considerando velocidade de sedimentação conforme aqui modelada, e ainda utilizando a equação de advecção-difusão para o transporte de massa, constituem ferramentas altamente adequadas à estimativa do transporte de sedimentos pela água. / The goal of this work is the research of sediment transport phenomena, deriving from outstanding turbulent eddies estimative. Thus, the mass transport equation (advection-diffusion) was connected with the filtered Navier-Stokes and continuity equations. In this context, the large-eddy simulation and sub-grid viscosity modeling established a convenient description of turbulence effects. The immersed boundary method was applied to model solid/fluid interface, represented here by the shapes of channel bottom. The filtered Navier-Stokes and continuity equations were solved by the fractional step method. The equations were discretized with the finite difference method, applied over staggered grids, whereas explicit Adams-Bashforth schemes (second and forth orders) were used in temporal advancement of velocities and sediment concentration fields. A new analytical formulation for settling velocity was obtained, while fortuitous re-suspension flux was applied like a boundary condition in the channel bottom. The computational code was totally developed in this work. The results of present simulations show that large-eddy simulation coupled to the immersed boundary method, considering, yet, the settling velocity of particles and the advection-diffusion equation for mass transport, constitute potential tools for sediment transport evaluation in water flows.
28

Modelação numérica de processos de sedimentação em escoamentos turbulentos e análise da ressuspensão em canais / Numerical modeling of settling processes in turbulent flows and channel re-suspension analysis

José Eduardo Alamy Filho 19 April 2006 (has links)
O estudo do transporte de sedimentos, partindo da estimativa de estruturas turbulentas relevantes, constituiu o principal foco deste trabalho. Assim, a equação de transporte de massa (advecção-difusão) foi aplicada em conjunto com as equações de Navier-Stokes e da continuidade filtradas. Neste contexto, houve a necessidade de uma descrição conveniente da turbulência, o que ocorreu mediante a aplicação da simulação de grandes escalas acoplada a modelos de viscosidade turbulenta sub-malha. O método de fronteira imersa foi utilizado na modelação da interface sólido/fluido, representada pela geometria de fundo dos canais. As equações de Navier-Stokes filtradas e da continuidade foram resolvidas numericamente pelo método de passos fracionados, o qual estabeleceu o almejado acoplamento entre ambas. Na discretização das equações governantes foi utilizado o método de diferenças finitas, aplicado sobre malhas deslocadas. Os esquemas explícitos de Adams-Bashforth (de segunda e quarta ordens) foram utilizados no avanço temporal das velocidades do escoamento e das concentrações de sedimentos. Uma nova formulação para a velocidade de sedimentação foi desenvolvida analiticamente, enquanto que eventuais fluxos de ressuspensão foram impostos como condição de contorno no fundo do canal. Todos os códigos computacionais, que estabeleceram as diretrizes e a lógica de cálculo, foram criados no contexto deste trabalho. Os resultados obtidos indicam que a simulação de grandes escalas, associada ao método de fronteira imersa, considerando velocidade de sedimentação conforme aqui modelada, e ainda utilizando a equação de advecção-difusão para o transporte de massa, constituem ferramentas altamente adequadas à estimativa do transporte de sedimentos pela água. / The goal of this work is the research of sediment transport phenomena, deriving from outstanding turbulent eddies estimative. Thus, the mass transport equation (advection-diffusion) was connected with the filtered Navier-Stokes and continuity equations. In this context, the large-eddy simulation and sub-grid viscosity modeling established a convenient description of turbulence effects. The immersed boundary method was applied to model solid/fluid interface, represented here by the shapes of channel bottom. The filtered Navier-Stokes and continuity equations were solved by the fractional step method. The equations were discretized with the finite difference method, applied over staggered grids, whereas explicit Adams-Bashforth schemes (second and forth orders) were used in temporal advancement of velocities and sediment concentration fields. A new analytical formulation for settling velocity was obtained, while fortuitous re-suspension flux was applied like a boundary condition in the channel bottom. The computational code was totally developed in this work. The results of present simulations show that large-eddy simulation coupled to the immersed boundary method, considering, yet, the settling velocity of particles and the advection-diffusion equation for mass transport, constitute potential tools for sediment transport evaluation in water flows.
29

Lattice Boltzmann method and immersed boundary method for the simulation of viscous fluid flows

Falagkaris, Emmanouil January 2018 (has links)
Most realistic fluid flow problems are characterised by high Reynolds numbers and complex boundaries. Over the last ten years, immersed boundary methods (IBM) that are able to cope with realistic geometries have been applied to Lattice- Boltzmann methods (LBM). These methods, however, have normally been applied to low Reynolds number problems. In the present work, an iterative direct forcing IBM has been successfully coupled with a multi-domain cascaded LBM in order to investigate viscous flows around rigid, moving and wilfully deformed boundaries at a wide range of Reynolds numbers. The iterative force-correction immersed boundary method of (Zhang et al., 2016) has been selected due to the improved accuracy of the computation, while the cascaded LB formulation is used due to its superior stability at high Reynolds numbers. The coupling is shown to improve both the stability and numerical accuracy of the solution. The resulting solver has been applied to viscous flow (up to a Reynolds number of 100000) passed a NACA-0012 airfoil at a 10 degree angle of attack. Good agreement with results obtained using a body-fitted Navier-Stokes solver has been obtained. At moving or deformable boundary applications, emphasis should be given on the influence of the internal mass on the computation of the aerodynamic forces, focusing on deforming boundary motions where the rigid body approximation is no longer valid. Both the rigid body and the internal Lagrangian points approximations are examined. The resulting solver has been applied to viscous flows around an in-line oscillating cylinder, a pitching foil, a plunging SD7003 airfoil and a plunging and flapping NACA-0014 airfoil. Good agreement with experimental results and other numerical schemes has been obtained. It is shown that the internal Lagrangian points approximation accurately captures the internal mass effects in linear and angular motions, as well as in deforming motions, at Reynolds numbers up to 4 • 104. Finally, an expanded higher-order immersed boundary method which addresses two major drawbacks of the conventional IBM will be presented. First, an expanded velocity profile scheme has been developed, in order to compensate for the discontinuities caused by the gradient of the velocity across the boundary. Second, a numerical method derived from the Navier-Stokes equations in order to correct the pressure distribution across the boundary has been examined. The resulting hybrid solver has been applied to viscous flows around stationary and oscillating cylinders and examined the hovering flight of elliptical wings at low Reynolds numbers. It is shown that the proposed scheme smoothly expands the velocity profile across the boundary and increases the accuracy of the immersed boundary method. In addition, the pressure correction algorithm correctly expands the pressure profile across the boundary leading to very accurate pressure coefficient values along the boundary surface. The proposed numerical schemes are shown to be very efficient in terms of computational cost. The majority of the presented results are obtained within a few hours of CPU time on a 2.8 GHz Intel Core i7 MacBook Pro computer with a 16GB memory.
30

Hydrodynamics of living fluids in microflows. / Hidrodinâmica de fluidos vivos em microescoamentos.

Mauá, Sara Malvar 01 July 2019 (has links)
The main contribution of the present work is the proposition of a framework for analysis of active suspensions using the Caenorhabditis elegans nematode as the living model. To do so, five different perspectives are used: kinematics, macro-reological, numerical, theoretical and micro-reological. First, a theoretical and experimental analysis of the kinematic motion of the nematodes suspended in a biological fluid is presented. Two different populations are examined: starving and well fed nematodes. We show that the relationship between the length of an individual nematode and the wavelength of its movement is linear and can be adjusted by a theoretical prediction proposed in this work. A deep discussion on propulsive mechanics based on a scale analysis that identifies three major forces acting on an individual nematode is made. In addition, we investigated the shear viscosity of Caenorhabditis elegans suspensions. The oscillatory shear experiments revealed an anomalous viscosity behavior with the variation of the volumetric fraction of suspension, ?. The effective viscosity of the suspension decreased with increasing nematode volumetric fraction at low concentrations. Based on the experimental data, a phenomenological equation for the effective viscosity of the suspension as a function of the volumetric fraction of particles is proposed. The collective behavior of the nematodes is also observed in linear regime through the difference of normal stresses. Finally, step strain tests are conducted to obtain the relaxation times. The presence of a negative active stress due to the nematoid driving behavior persists for a period of time, leading to a negative undershoot and an oscillatory behavior in the relaxation function. In order to propose a rheological model, simplifications are made in the model and immersed boundary method simulations are conducted in a flexible filament, varying the type of movement that it performs. It is observed that the presence of asymmetries in its undulating movement generates drastic changes on its kinematic responses. A rheological model as a function of filament orientation is proposed and validated with experimental data in linear regime. After validation of the proposed constitutive equation, the model is observed under the nonlinear regime of oscillatory shear, in which the rheological characterizations are made based on existing frameworks using Lissajous-Bowditch curves and Pipkin diagrams. Finally, a protocol for analysis of suspensions in a microrheometer is presented. Particles are added and tracked as unidirectional oscillatory shear (pulsatile flow) is applied. The velocity and shear rate profiles are obtained, as well as the rheological signals equivalent to the strain rate and stress. Signal analysis tools are used and an artificial intelligence system is proposed to remove the component added to the signal by unidirectional shear, aiming to reconstruct the signal with null temporal average and allowing the application of well known rheological theories, such as the decomposition of stresses in coefficients of Chebyshev, for the calculation of viscommetric quantities of compliances and fluidities. The major contribution of the study concerns the observation, characterization, modeling and simulation of a microsized animal that moves in different fashion, depending on the environment, and the surrounding fluid. The rheological properties analyzed, simuations performed and model proposed can be used for both production of artifitial microorganisms and control of living organisms. Moreover, this combination of analyses and techniques can be used to study any type of passive and active suspension providing new and conclusive results regarding the rheological characterization and the physical behavior of the particles. / A principal contribuição do presente trabalho é a proposição de um framework de análise de suspensões ativas utilizando como modelo vivo o nematoide Caenorhabditis elegans. Para tanto, cinco perspectivas diferentes são utilizadas: cinemática, macrorreológica, numérica, teórica e microrreológica. Primeiramente, uma análise teórica e experimental do movimento cinemático das partículas ativas suspensas em um fluido biológico é apresentada. Duas populações diferentes são examinadas: na ausência de alimento e com nematoides bem alimentados. Mostramos que a relação entre o comprimento de um nematoide individual e o comprimento de onda de seu movimento é linear e pode ser ajustada por uma previsão teórica proposta neste trabalho. Uma profunda discussão sobre a mecânica de propulsão com base em uma análise de escala que identifica três forças principais que atuam em um nematoide individual é feita. Além disso, investigamos a viscosidade de cisalhamento das suspensões de Caenorhabditis elegans. Os experimentos em cisalhamento oscilatório revelaram um comportamento anômalo da viscosidade com a variação da fração volumétrica de suspensão, ?. A viscosidade efetiva da suspensão diminuiu com o aumento da fração volumétrica do nematoide para pequenas concentrações. Baseando-se nos dados experimentais, uma equação fenomenológica para a viscosidade efetiva da suspensão em função da fração volumétrica de partículas é proposta. O comportamento coletivo dos nematoides é também observado, em regime linear, pela diferença de tensões normais. Finalmente, o teste de step strain é conduzido para obter os tempos de relaxação. A presença de uma tensão ativa negativa devido ao comportamento impulsor do nematoide persiste por um certo período, levando a um undershoot negativo e a um comportamento oscilatório na função de relaxação. A fim de propor um modelo reológico, simplificações são efetuadas no modelo e simulações usando o método de fronteira imersa são conduzidas em um filamento flexível, variando o tipo de movimento que este realiza. Observa-se que a presença de assimetrias em seu movimento ondulatório gera drásticas mudanças em suas respostas cinemáticas. Um modelo reológico em função da orientação do filamento é proposto e validado com os dados experimentais em regime linear. Após a validação da equação constitutiva proposta, o modelo é observado sob o regime não-linear do cisalhamento oscilatório, no qual as caracterizações reológicas são feitas com base nos frameworks existentes, utilizando curvas de Lissajous-Bowditch e diagramas de Pipkin. Por fim, é apresentado um protocolo de análise de suspensões em um microrreômetro. Partículas são adicionadas e rastreadas à medida que um cisalhamento unidirecional (escoamento pulsátil) é aplicado. Os perfis de velocidade e taxa de cisalhamento são obtidos, assim como os sinais reológicos equivalentes à taxa de deformação e tensão. Ferramentas de análise de sinais são utilizadas e um sistema de inteligência artificial é proposto para remoção da componente constante do sinal adicionada pelo cisalhamento unidirecional, visando reconstruir o sinal com média temporal nula e possibilitando a aplicação de teorias reológicas já conhecidas, como a decomposição de tensões em coeficientes de Chebyshev para o cálculo das quantidades viscométricas de conformidade e fluidez. A principal contribuição do estudo diz respeito à observação, caracterização, modelagem e simulação de um animal microscópico que se movimenta de maneira diferente dependendo do ambiente e do fluido circundante. As propriedades reológicas analisadas, as simulações realizadas e o modelo proposto podem ser utilizados tanto para a produção de microorganismos artificiais quanto para o controle de organismos vivos. Além disso, essa combinação de análises e técnicas pode ser usada para estudo de qualquer tipo de suspensão ativa e passiva, fornecendo resultados novos e conclusivos em relação à caracterização reológica e ao comportamento físico das partículas.

Page generated in 0.084 seconds