• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An immersed boundary method for particles and bubbles in magnetohydrodynamic flows

Schwarz, Stephan 03 July 2014 (has links) (PDF)
This thesis presents a numerical method for the phase-resolving simulation of rigid particles and deformable bubbles in viscous, magnetohydrodynamic flows. The presented approach features solid robustness and high numerical efficiency. The implementation is three-dimensional and fully parallel suiting the needs of modern high-performance computing. In addition to the steps towards magnetohydrodynamics, the thesis covers method development with respect to the immersed boundary method which can be summarized in simple words by From rigid spherical particles to deformable bubbles. The development comprises the extension of an existing immersed boundary method to non-spherical particles and very low particle-to-fluid density ratios. A detailed study is dedicated to the complex interaction of particle shape, wake and particle dynamics. Furthermore, the representation of deformable bubble shapes, i.e. the coupling of the bubble shape to the fluid loads, is accounted for. The topic of bubble interaction is surveyed including bubble collision and coalescence and a new coalescence model is introduced. The thesis contains applications of the method to simulations of the rise of a single bubble and a bubble chain in liquid metal with and without magnetic field highlighting the major effects of the field on the bubble dynamics and the flow field. The effect of bubble coalescence is quantified for two closely adjacent bubble chains. A framework for large-scale simulations with many bubbles is provided to study complex multiphase phenomena like bubble-turbulence interaction in an efficient manner.
2

A numerical method for fluid-structure interactions of slender rods in turbulent flow

Tschisgale, Silvio 12 March 2020 (has links)
This thesis presents a numerical method for the simulation of fluid-structure interaction (FSI) problems on high-performance computers. The proposed method is specifically tailored to interactions between Newtonian fluids and a large number of slender viscoelastic structures, the latter being modeled as Cosserat rods. From a numerical point of view, such kind of FSI requires special techniques to reach numerical stability. When using a partitioned fluid-structure coupling approach this is usually achieved by an iterative procedure, which drastically increases the computational effort. In the present work, an alternative coupling approach is developed based on an immersed boundary method (IBM). It is unconditionally stable and exempt from any global iteration between the fluid part and the structure part. The proposed FSI solver is employed to simulate the flow over a dense layer of vegetation elements, usually designated as canopy flow. The abstracted canopy model used in the simulation consists of 800 strip-shaped blades, which is the largest canopy-resolving simulation of this type done so far. To gain a deeper understanding of the physics of aquatic canopy flows the simulation data obtained are analyzed, e.g., concerning the existence and shape of coherent structures.
3

An immersed boundary method for particles and bubbles in magnetohydrodynamic flows

Schwarz, Stephan 03 July 2014 (has links)
This thesis presents a numerical method for the phase-resolving simulation of rigid particles and deformable bubbles in viscous, magnetohydrodynamic flows. The presented approach features solid robustness and high numerical efficiency. The implementation is three-dimensional and fully parallel suiting the needs of modern high-performance computing. In addition to the steps towards magnetohydrodynamics, the thesis covers method development with respect to the immersed boundary method which can be summarized in simple words by From rigid spherical particles to deformable bubbles. The development comprises the extension of an existing immersed boundary method to non-spherical particles and very low particle-to-fluid density ratios. A detailed study is dedicated to the complex interaction of particle shape, wake and particle dynamics. Furthermore, the representation of deformable bubble shapes, i.e. the coupling of the bubble shape to the fluid loads, is accounted for. The topic of bubble interaction is surveyed including bubble collision and coalescence and a new coalescence model is introduced. The thesis contains applications of the method to simulations of the rise of a single bubble and a bubble chain in liquid metal with and without magnetic field highlighting the major effects of the field on the bubble dynamics and the flow field. The effect of bubble coalescence is quantified for two closely adjacent bubble chains. A framework for large-scale simulations with many bubbles is provided to study complex multiphase phenomena like bubble-turbulence interaction in an efficient manner.
4

Phase-resolving direct numerical simulations of particle transport in liquids - From microfluidics to sediment

Fröhlich, Jochen, Hafemann, Thomas E., Jain, Ramandeep 04 April 2024 (has links)
The article describes direct numerical simulations using an Euler–Lagrange approach with an immersed-boundary method to resolve the geometry and trajectory of particles moving in a flow. The presentation focuses on own work of the authors and discusses elements of physical and numerical modeling in some detail, together with three areas of application: microfluidic transport of spherical and nonspherical particles in curved ducts, flows with bubbles at different void fraction ranging from single bubbles to dense particle clusters, some also subjected to electro-magnetic forces, and bedload sediment transport with spherical and nonspherical particles. These applications with their specific requirements for numerical modeling illustrate the versatility of the approach and provide condensed information about main findings.

Page generated in 0.0669 seconds