Spelling suggestions: "subject:"immunoengineering"" "subject:"neuroengineering""
1 |
Fc coated micro/nanoparticles for humoral immune system modulationPacheco, Patricia Marie 07 January 2016 (has links)
The body’s humoral immune response plays a larger role in the body’s defenses beyond screening for invading pathogens. Modulation of this response is also vital for tissue regeneration, drug delivery, and vaccine development. The immune system operates within a complicated feedback loop and as such, altering the strength of the immune response can be approached from an engineering perspective. While a strong initial input can direct the response to either a pro- or anti-inflammatory bias, extreme responses can be deleterious, as in the case of allergic reactions or sepsis. Therefore, the objective of this thesis was to develop a novel biomaterials platform that can be used to alter the immune response in a tunable manner. Antibodies are not only the workhorses of the adaptive immune response but are also powerful immunomodulators through their Fc (constant fragment) regions. By coating microparticles with Fc ligands in variable surface densities, we were able to utilize the sensitivity of multivalent signaling to tune the response of the immune response. Microparticle size was also varied to decouple the effects of physical versus biochemical signaling.
The goal of this thesis was to analyze the effects of Fc coated particles on two major components of the humoral immune responses: macrophages and the complement system. We first looked at the mechanical response of macrophages through phagocytosis and found that both Fc density and microparticle size had significant impacts on macrophage phagocytosis. These results also provide a particle delivery “toolbox” for future applications. We then analyzed the downstream effects of Fc particles on macrophage phenotype and on phenotype plasticity. This showed that the addition of Fc particles lead to increased production of TNFα and IL-12 and inverted the response of LPS treated macrophages. Finally, we applied our particles to activate the complement system, an often overlooked cascade of serum protein activation that results in bacterial cell lysis. Cleaved components of the complement system are also powerful chemokines and can act as a vaccine adjuvant. Fc density on particles played a large role in complement system activation, both through the classical and alternative pathway, as it lead to a binary response for smaller particles and a tunable response for larger particles. We then applied these results to create a novel form of antibiotic by using Fc particles to direct complement-mediated bacterial cytotoxicity. The use of immune activation by Fc particles was also applied to better understand and improve the tuberculosis vaccine. Our findings are significant to the biomaterials and immunology fields as we showed that Fc microparticles can generally be used to alter the immune response in a tunable manner for a broad range of applications, as well answering fundamental immunology questions.
|
2 |
Combined Gene Therapy and Functional Tissue Engineering for the Treatment of OsteoarthritisGlass, Katherine Anne January 2016 (has links)
<p>The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (hMSC) chondrogenesis. We combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in hMSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce hMSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.</p><p> Following this, we modified this anti-inflammatory engineered cartilage to incorporate rabbit MSCs and evaluated this therapeutic strategy in a pilot study in vivo in rabbit osteochondral defects. Rabbits were fed a custom doxycycline diet to induce gene expression in engineered cartilage implanted in the joint. Serum and synovial fluid were collected and the levels of doxycycline and inflammatory mediators were measured. Rabbits were euthanized 3 weeks following surgery and tissues were harvested for analysis. We found that doxycycline levels in serum and synovial fluid were too low to induce strong overexpression of hIL-1Ra in the joint and hIL-1Ra was undetectable in synovial fluid via ELISA. Although hIL-1Ra expression in the first few days local to the site of injury may have had a beneficial effect, overall a higher doxycycline dose and more readily transduced cell population would improve application of this therapy. </p><p> In addition to the 3D woven PCL scaffold, cartilage-derived matrix scaffolds have recently emerged as a promising option for cartilage tissue engineering. Spatially-defined, biomaterial-mediated lentiviral gene delivery of tunable and inducible morphogenetic transgenes may enable guided differentiation of hMSCs into both cartilage and bone within CDM scaffolds, enhancing the ability of the CDM scaffold to provide chondrogenic cues to hMSCs. In addition to controlled production of anti-inflammatory proteins within the joint, in situ production of chondro- and osteo-inductive factors within tissue-engineered cartilage, bone, or osteochondral tissue may be highly advantageous as it could eliminate the need for extensive in vitro differentiation involving supplementation of culture media with exogenous growth factors. To this end, we have utilized controlled overexpression of transforming growth factor-beta 3 (TGF-β3), bone morphogenetic protein-2 (BMP-2) or a combination of both factors, to induce chondrogenesis, osteogenesis, or both, within CDM hemispheres. We found that TGF-β3 overexpression led to robust chondrogenesis in vitro and BMP-2 overexpression led to mineralization but not accumulation of type I collagen. We also showed the development of a single osteochondral construct by combining tissues overexpressing BMP-2 (hemisphere insert) and TGF-β3 (hollow hemisphere shell) and culturing them together in the same media. Chondrogenic ECM was localized in the TGF-β3-expressing portion and osteogenic ECM was localized in the BMP-2-expressing region. Tissue also formed in the interface between the two pieces, integrating them into a single construct. </p><p> Since CDM scaffolds can be enzymatically degraded just like native cartilage, we hypothesized that IL-1 may have an even larger influence on CDM than PCL tissue-engineered constructs. Additionally, anti-inflammatory engineered cartilage implanted in vivo will likely affect cartilage and the underlying bone. There is some evidence that osteogenesis may be enhanced by IL-1 treatment rather than inhibited. To investigate the effects of an inflammatory environment on osteogenesis and chondrogenesis within CDM hemispheres, we evaluated the ability of IL-1Ra-expressing or control constructs to undergo chondrogenesis and osteogenesis in the prescence of IL-1. We found that IL-1 prevented chondrogenesis in CDM hemispheres but did not did not produce discernable effects on osteogenesis in CDM hemispheres. IL-1Ra-expressing CDM hemispheres produced robust cartilage-like ECM and did not upregulate inflammatory mediators during chondrogenic culture in the presence of IL-1.</p> / Dissertation
|
Page generated in 0.0625 seconds