• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 256
  • 28
  • Tagged with
  • 286
  • 271
  • 64
  • 58
  • 58
  • 58
  • 58
  • 58
  • 44
  • 40
  • 40
  • 33
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Human genetic factors involved in immunity to Plasmodium falciparum infection

Vafa Homann, Manijeh January 2008 (has links)
<p>This study investigated the associations between IL-4 -590 C/T and IL-10 -1087 A/G polymorphisms and malariometric indexes in the Fulani and the Dogon ethnic groups living in sympatry in Mali and differing in susceptibility to malaria. The correlations between antibodies level and parasitological data as well as splenomegaly were assessed. The impact of IL-4 -590 variants on the levels of the studied antibodies was also studied. </p><p>The allele and genotype frequencies of both studied SNPs differed significantly between the two groups. The Fulani IL-4 T allele carriers had a significantly higher infection prevalence compared with those carrying the CC genotype. No correlation between anti-malarial antibody levels and parasite prevalence was seen in any of the communities. In the Fulani, the increase in total IgE levels was related to the presence of infection. Malaria-specific IgG4 levels were negatively correlated to the number of clones within the Fulani. The Fulani IL-4 T allele carriers had higher total and malaria-specific IgE levels, compared to the CC genotype carriers. These results suggest that the amount of antibodies may not be the key element in the protection against malaria. IgG4 might be involved in protection against malaria. The impact of IL-4 -590 variants on the antibody levels may be affected by other genetic/epigenetic/epistatic or environmental factors. </p><p>In the study in Senegal, multiplicity of infection (MOI) increased after the transmission season in all subjects, except in α-thalassaemic and in G6PD-mutated children, suggesting that α-thalassaemia may protect against infection by certain parasite strains. G6PD-mutated individuals may resist against increase in MOI after the transmission season due to rapid clearance of infection at an early stage. HbAs and the ABO system do not affect MOI in asymptomatic individuals. MOI was positively correlated to parasitemia, and did not vary over age (in the range of 2 to 10 years). No relation between MOI and clinical attack was noted. </p>
202

Investigation of a Method for Determination of Anticomplementary Activity (ACA) in Octagam.

Borg, Ann-Louise January 2009 (has links)
<p>This Master Thesis was conducted at Octapharma AB in Stockholm.</p><p>Anticomplementary activity (ACA) is a measure of the product’s abilities to activate the complement system. IgG aggregates are mainly responsible for this activation. Two different performances of a method for determination of ACA in Octagam<sup>®</sup> are available. The two performances are based on the reference method for test of ACA in immunoglobulins in the European Pharmacopoeia Commission Guideline 6.0 (chapter 2.6.17). The method is carried out either in test tubes or on microtiter plates. The test tube method can be performed either in a manual manner or modified, being more automated. The latter performance has been applied in this study. The plate method is more automated than both of the tube methods. The plate method and the manual tube method have earlier seemed to result in different outcomes, which was the basis for this thesis.</p><p>The plate method and the modified test tube method have been compared and robustness parameters have been studied in order to see which factors influence on the end result. The adequacy of using Human Biological Reference Preparation (human BRP) as a control for the ACA method in general has also been investigated. Samples of the product are outside the scope of this thesis and have not been investigated.</p><p>According to this study, the plate method and the modified tube method are not comparable with regard to complement titration results and to ACA of the BRP control. A higher precision is gained with the plate method. This in combination with the higher degree of automation makes the plate method advantageous in several aspects. When it comes to the robustness of the ACA method in general, the sheep red blood cells (SRBC) used are critical. Haemolysin dilution and complement activity seem to be critical as well.</p><p>Human BRP is, according to this study more adequate as a reference for the plate method than for the tube method. An In house control is believed to be more representative to the ACA method in general as it is of the same nature as the samples analysed, in contrast to the human BRP.</p>
203

Sulphonamide Resistance in <i>Neisseria meningitidis</i> and Commensal <i>Neisseria</i> Species

Qvarnström, Yvonne January 2003 (has links)
<p>Extensive use of the sulphonamide drugs against the bacterium <i>Neisseria meningitidis</i> has resulted in drug resistance development. Sulphonamide resistance in <i>N. meningitidis</i> is caused by alterations in the chromosomal <i>folP</i> gene, coding for DHPS (dihydropteroate synthase). One type of resistant DHPS has high sequence divergence compared to DHPS from susceptible strains. This divergent DHPS has a duplication of two amino acids, crucial for resistance, and an altered amino acid in position 68, important for both resistance and substrate binding. When introduced into a susceptible DHPS, these two alterations did not incur resistance and resulted in abnormal substrate binding properties. This indicated that the divergent DHPS was not directly developed by mutations, but rather had been acquired by horizontal transfer of <i>folP</i> from another species.</p><p>Commensal <i>Neisseria</i> species are implied as the origin of the horizontally transferred resistance. Sulphonamide-resistant commensal <i>Neisseria</i> isolates were detected in throat swabs from healthy individuals not exposed to these drugs; however, transformation of resistance from these commensals to <i>N. meningitidis</i> was restricted in the laboratory. A comparison of the genomic region surrounding <i>folP</i> revealed differences in gene organisation and in the DNA uptake sequence between <i>N. meningitidis</i> and distantly related commensals. These differences are likely to restrict transformation between distantly related <i>Neisseria</i> species.</p><p>DHPS participates in the folate biosynthesis pathway. The enzyme preceding DHPS in the pathway, HPPK (hydroxymethyl-dihydropterin pyrophosphokinase), from <i>N. meningitidis</i> was characterised and a method for studying substrate channelling from HPPK to DHPS was developed. The information gained could be exploited in the search for new antibiotics.</p><p>In conclusion, well-adapted sulphonamide-resistant strains of <i>N. meningitidis</i> and commensal <i>Neisseria</i> are established in the bacterial population and resistance can be horizontally spread by natural transformation. This may explain the abundance of sulphonamide-resistant <i>N. meningitidis</i>, although these drugs are no longer used against this bacterium.</p>
204

Antibody Feedback Regulation and T Cells

Carlsson, Fredrik January 2007 (has links)
<p>Antibodies, passively administered or actively produced, regulate immune responses to the antigen they recognize. This phenomenon is called antibody-mediated feedback regulation. Feedback regulation can be positive or negative, resulting in >1000-fold enhancement or >99% suppression of the specific antibody response. The outcome depends on size, structure, dose, and route of administration of the antigen as well as on class and subclass of the regulating antibody. This thesis investigates the role of T cells in antibody-mediated feedback enhancement, using both<i> in vivo</i> and <i>in vitro</i> approaches. IgE-antibodies enhance antibody responses to small soluble proteins. This effect is entirely dependent on the low-affinity receptor for IgE, CD23, and most likely depends on increased antigen presentation by CD23<sup>+</sup> B cells. Strengthening this hypothesis, we show that IgE-mediated CD4<sup>+</sup> T cell proliferation<i> in vitro</i> required the presence of CD19<sup>+</sup> CD43<sup>-</sup> CD23<sup>+</sup> B cells. CD23 has also been shown to negatively regulate immune responses. Transgenic mice overexpressing CD23 are known to have impaired responses to antigens in alum. We here demonstrate that they are normal regarding IgE-mediated enhancement. IgG3 enhances antibody responses, and previous data suggested involvement of complement. We found that IgG3-mediated enhancement works well in mice lacking the only Fc-receptor known to bind IgG3, CD64. Although IgG3 could enhance antibody responses it had no major effect on T cell responses. Complement-receptors 1/2 (CR1/2) are required for the initiation of normal antibody responses. Although mice lacking CR1/2 had impaired antibody responses after immunization with sheep erythrocytes, their specific T cell responses were unaffected. The presented data do not support the idea that increased complement-mediated antigen presentation is a major mechanism behind the involvement of complement in antibody responses. They support the hypothesis that antigens forming complement-containing immune complexes may activate specific B cells by co-crosslinking BCR and CR1/2.</p>
205

Mechanisms and Therapeutic Interventions of Instant Blood-Mediated Inflammatory Reaction (IBMIR)

Johansson, Helena January 2007 (has links)
<p>Intraportal transplantation of isolated islets of Langerhans is a procedure approaching clinical acceptance as a treatment for patients with type I diabetes mellitus. One major problem with this treatment is that large amounts of cells are lost at the time of infusion into the portal vein, resulting in a low level of engraftment of the islets. One likely explanation for this loss is the instant blood-mediated inflammatory reaction (IBMIR), a thrombotic/inflammatory reaction occurring when islets come in contact with blood. The IBMIR is characterized by coagulation and complement activation, leading to platelet consumption, leukocyte infiltration of the islets, and disruption of islet integrity.</p><p>In this thesis, the IBMIR is shown to be triggered by tissue factor (TF), the main initiator of blood coagulation<i> in vivo</i>. TF is expressed in two forms by the endocrine cells of the pancreas, a full-length membrane-bound and an alternatively spliced soluble form. Blocking TF <i>in vitro</i> efficiently reduces the macroscopic clotting, expression of coagulation activation markers, and leukocyte infiltration. This blockade can be achieved by adding either an active site-specific anti-TF antibody or site-inactivated FVIIa that competes with active FVIIa in the blood. TF may be secreted from the islets, since it is colocalized with insulin and glucagon in their granules. The IBMIR has also been demonstrated <i>in vivo</i> in patients transplanted with isolated islets.</p><p>There are two ways to block the IBMIR in transplantation: systemic treatment of the patients, or islet pretreatment before transplantation to reduce their thrombogenicity. In this thesis, low molecular weight dextran sulfate (LMW-DS) is shown to reduce activation of the complement and coagulation systems and decrease the cell infiltration into the islets <i>in vitro</i> and<i> in vivo</i>, in both a xenogenic and an allogenic setting. Based on these results, LMW-DS is now in clinical trials. </p>
206

Suppressive DNA vaccination in Experimental Autoimmune Encephalomyelitis and how it affects gene expression of inflammatory mediators

Jakobsson, Charlotta January 2007 (has links)
<p>Vaccination with DNA encoding the encephalitogenic autoantigen myelin oligodendrocyte glycoprotein (MOG), pMOG91-108, induce a protective immunity against experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis. By injection of a DNA vaccine that contains a DNA region encoding short interfering RNA specific for IFNβ (pMOG-IFNβ) the protective effect of the DNA vaccination is totally inhibited. This demonstrates that IFN-β is directly involved in the protective mechanism against EAE.</p><p>The objective of this project was to study how molecules involved in the inflammatory process in EAE are regulated by suppressive DNA vaccination. mRNA expression of IL-1β, TGF β, IL-23p40 and Axl receptor tyrosine kinas did not show any significant differences between the groups vaccinated with these DNA vaccines. IL-6 and IFNγ mRNA expression after MOG stimulation in rats treated with pCI, a control vaccine was significantly higher compared to the group vaccinated with vaccine containing pMOG-IFNβ. IL-17 m RNA expression after MOG stimulation in pCl-treated rats was significantly higher compared to the group vaccinated with vaccine containing pMOG-91-108. Of these results the mRNA expression of IL-17 and IL-6 were of interest for the project.</p><p>The immune system normally protects the body against infections and T-cells have an important role in this defence system. In MS and EAE, the immune system attacks the myelin and this process is caused by a dysregulation of the T-cells. IL-17-producing Th17 cells mediate EAE. Naïve CD4 T-cells in the presence of IL-6 and TGFβ are differentiated to Th17 cells instead of differentiating into T-helper or regulatory T-cells. These IL-17-producing T-cells are highly pathogenic and essential for the development of EAE. The results showed that pMOG IFNβ vaccine had an effect at the immune response, which resulted in an inhibition of the IL-6 production and that vaccination with pMOG91-108 impairs differentiation of IL-17-producing T-cells.</p>
207

Sulphonamide Resistance in Neisseria meningitidis and Commensal Neisseria Species

Qvarnström, Yvonne January 2003 (has links)
Extensive use of the sulphonamide drugs against the bacterium Neisseria meningitidis has resulted in drug resistance development. Sulphonamide resistance in N. meningitidis is caused by alterations in the chromosomal folP gene, coding for DHPS (dihydropteroate synthase). One type of resistant DHPS has high sequence divergence compared to DHPS from susceptible strains. This divergent DHPS has a duplication of two amino acids, crucial for resistance, and an altered amino acid in position 68, important for both resistance and substrate binding. When introduced into a susceptible DHPS, these two alterations did not incur resistance and resulted in abnormal substrate binding properties. This indicated that the divergent DHPS was not directly developed by mutations, but rather had been acquired by horizontal transfer of folP from another species. Commensal Neisseria species are implied as the origin of the horizontally transferred resistance. Sulphonamide-resistant commensal Neisseria isolates were detected in throat swabs from healthy individuals not exposed to these drugs; however, transformation of resistance from these commensals to N. meningitidis was restricted in the laboratory. A comparison of the genomic region surrounding folP revealed differences in gene organisation and in the DNA uptake sequence between N. meningitidis and distantly related commensals. These differences are likely to restrict transformation between distantly related Neisseria species. DHPS participates in the folate biosynthesis pathway. The enzyme preceding DHPS in the pathway, HPPK (hydroxymethyl-dihydropterin pyrophosphokinase), from N. meningitidis was characterised and a method for studying substrate channelling from HPPK to DHPS was developed. The information gained could be exploited in the search for new antibiotics. In conclusion, well-adapted sulphonamide-resistant strains of N. meningitidis and commensal Neisseria are established in the bacterial population and resistance can be horizontally spread by natural transformation. This may explain the abundance of sulphonamide-resistant N. meningitidis, although these drugs are no longer used against this bacterium.
208

Antibody Feedback Regulation and T Cells

Carlsson, Fredrik January 2007 (has links)
Antibodies, passively administered or actively produced, regulate immune responses to the antigen they recognize. This phenomenon is called antibody-mediated feedback regulation. Feedback regulation can be positive or negative, resulting in &gt;1000-fold enhancement or &gt;99% suppression of the specific antibody response. The outcome depends on size, structure, dose, and route of administration of the antigen as well as on class and subclass of the regulating antibody. This thesis investigates the role of T cells in antibody-mediated feedback enhancement, using both in vivo and in vitro approaches. IgE-antibodies enhance antibody responses to small soluble proteins. This effect is entirely dependent on the low-affinity receptor for IgE, CD23, and most likely depends on increased antigen presentation by CD23+ B cells. Strengthening this hypothesis, we show that IgE-mediated CD4+ T cell proliferation in vitro required the presence of CD19+ CD43- CD23+ B cells. CD23 has also been shown to negatively regulate immune responses. Transgenic mice overexpressing CD23 are known to have impaired responses to antigens in alum. We here demonstrate that they are normal regarding IgE-mediated enhancement. IgG3 enhances antibody responses, and previous data suggested involvement of complement. We found that IgG3-mediated enhancement works well in mice lacking the only Fc-receptor known to bind IgG3, CD64. Although IgG3 could enhance antibody responses it had no major effect on T cell responses. Complement-receptors 1/2 (CR1/2) are required for the initiation of normal antibody responses. Although mice lacking CR1/2 had impaired antibody responses after immunization with sheep erythrocytes, their specific T cell responses were unaffected. The presented data do not support the idea that increased complement-mediated antigen presentation is a major mechanism behind the involvement of complement in antibody responses. They support the hypothesis that antigens forming complement-containing immune complexes may activate specific B cells by co-crosslinking BCR and CR1/2.
209

Mechanisms and Therapeutic Interventions of Instant Blood-Mediated Inflammatory Reaction (IBMIR)

Johansson, Helena January 2007 (has links)
Intraportal transplantation of isolated islets of Langerhans is a procedure approaching clinical acceptance as a treatment for patients with type I diabetes mellitus. One major problem with this treatment is that large amounts of cells are lost at the time of infusion into the portal vein, resulting in a low level of engraftment of the islets. One likely explanation for this loss is the instant blood-mediated inflammatory reaction (IBMIR), a thrombotic/inflammatory reaction occurring when islets come in contact with blood. The IBMIR is characterized by coagulation and complement activation, leading to platelet consumption, leukocyte infiltration of the islets, and disruption of islet integrity. In this thesis, the IBMIR is shown to be triggered by tissue factor (TF), the main initiator of blood coagulation in vivo. TF is expressed in two forms by the endocrine cells of the pancreas, a full-length membrane-bound and an alternatively spliced soluble form. Blocking TF in vitro efficiently reduces the macroscopic clotting, expression of coagulation activation markers, and leukocyte infiltration. This blockade can be achieved by adding either an active site-specific anti-TF antibody or site-inactivated FVIIa that competes with active FVIIa in the blood. TF may be secreted from the islets, since it is colocalized with insulin and glucagon in their granules. The IBMIR has also been demonstrated in vivo in patients transplanted with isolated islets. There are two ways to block the IBMIR in transplantation: systemic treatment of the patients, or islet pretreatment before transplantation to reduce their thrombogenicity. In this thesis, low molecular weight dextran sulfate (LMW-DS) is shown to reduce activation of the complement and coagulation systems and decrease the cell infiltration into the islets in vitro and in vivo, in both a xenogenic and an allogenic setting. Based on these results, LMW-DS is now in clinical trials.
210

Human genetic factors involved in immunity to Plasmodium falciparum infection

Vafa Homann, Manijeh January 2008 (has links)
This study investigated the associations between IL-4 -590 C/T and IL-10 -1087 A/G polymorphisms and malariometric indexes in the Fulani and the Dogon ethnic groups living in sympatry in Mali and differing in susceptibility to malaria. The correlations between antibodies level and parasitological data as well as splenomegaly were assessed. The impact of IL-4 -590 variants on the levels of the studied antibodies was also studied. The allele and genotype frequencies of both studied SNPs differed significantly between the two groups. The Fulani IL-4 T allele carriers had a significantly higher infection prevalence compared with those carrying the CC genotype. No correlation between anti-malarial antibody levels and parasite prevalence was seen in any of the communities. In the Fulani, the increase in total IgE levels was related to the presence of infection. Malaria-specific IgG4 levels were negatively correlated to the number of clones within the Fulani. The Fulani IL-4 T allele carriers had higher total and malaria-specific IgE levels, compared to the CC genotype carriers. These results suggest that the amount of antibodies may not be the key element in the protection against malaria. IgG4 might be involved in protection against malaria. The impact of IL-4 -590 variants on the antibody levels may be affected by other genetic/epigenetic/epistatic or environmental factors. In the study in Senegal, multiplicity of infection (MOI) increased after the transmission season in all subjects, except in α-thalassaemic and in G6PD-mutated children, suggesting that α-thalassaemia may protect against infection by certain parasite strains. G6PD-mutated individuals may resist against increase in MOI after the transmission season due to rapid clearance of infection at an early stage. HbAs and the ABO system do not affect MOI in asymptomatic individuals. MOI was positively correlated to parasitemia, and did not vary over age (in the range of 2 to 10 years). No relation between MOI and clinical attack was noted.

Page generated in 0.0324 seconds