• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 256
  • 28
  • Tagged with
  • 286
  • 271
  • 64
  • 58
  • 58
  • 58
  • 58
  • 58
  • 44
  • 40
  • 40
  • 33
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

The Physiological Cost of Antibiotic Resistance

Macvanin, Mirjana January 2003 (has links)
<p>Becoming antibiotic resistant is often associated with fitness costs for the resistant bacteria. This is seen as a loss of competitiveness against the antibiotic-sensitive wild-type in an antibiotic-free environment. In this study, the physiological alterations associated with fitness cost of antibiotic resistance <i>in vitro</i> (in the laboratory medium), and <i>in vivo</i> (in a mouse infection model), are identified in the model system of fusidic acid resistant (Fus<sup>R</sup>) <i>Salmonella</i> <i>enterica</i> serovar Typhimurium.</p><p>Fus<sup>R</sup> mutants have mutations in <i>fusA</i>, the gene that encodes translation elongation factor G (EF-G). Fus<sup>R</sup> EF-G has a slow rate of regeneration of active EF-G·GTP off the ribosome, resulting in a slow rate of protein synthesis. The low fitness of Fus<sup>R</sup> mutants <i>in vitro</i>, and <i>in vivo</i>, can be explained in part by a slow rate of protein synthesis and resulting slow growth. However, some Fus<sup>R</sup> mutants with normal rates of protein synthesis still suffer from reduced fitness <i>in vivo</i>. We observed that Fus<sup>R</sup> mutants have perturbed levels of the global regulatory molecule ppGpp. One consequence of this is an inefficient induction of RpoS, a regulator of general stress reponse and an important virulence factor for <i>Salmonella</i>. In addition, we found that Fus<sup>R</sup> mutants have reduced amounts of heme, a co-factor of catalases and cytochromes. As a consequence of the heme defect, Fus<sup>R</sup> mutants have a reduced ability to withstand oxidative stress and a low rate of aerobic respiration.</p><p>The pleiotropic phenotypes of Fus<sup>R</sup> mutants suggest that antibiotic resistance can be associated with broad changes in bacterial physiology. Knowledge of physiological alterations that reduce the fitness of antibiotic-resistant mutants can be useful in identifying novel targets for antimicrobial agents. Drugs that alter the levels of global transcriptional regulators such as ppGpp or RpoS deserve attention as potential antimicrobial agents. Finally, the observation that Fus<sup>R</sup> mutants have increased sensitivity to several unrelated classes of antibiotics suggests that the identification of physiological cost of resistance can help in optimizing treatment of resistant bacterial populations.</p>
242

Development and Stability of Antibiotic Resistance

Sjölund, Maria January 2004 (has links)
<p>Antibiotic resistance is of current concern. Bacteria have become increasingly resistant to commonly used antibiotics and we are facing a growing resistance problem. The present thesis was aimed at studying the impact of antibiotic treatment on pathogenic bacteria as well as on the normal human microbiota, with focus on resistance development.</p><p>Among the factors that affect the appearance of acquired antibiotic resistance, the mutation frequency and biological cost of resistance are of special importance. Our work shows that the mutation frequency in clinical isolates of <i>Helicobacter pylori</i> was generally higher than for other studied bacteria such as <i>Enterobacteriaceae; </i>¼ of the isolates displayed a mutation frequency higher than<i> Enterobacteriaceae </i>defective<i> </i>mismatch repair mutants and could be regarded as mutator strains.</p><p>In <i>H. pylori</i>, clarithromycin resistance confers a biological cost, as measured by decreased competitive ability of the resistant mutants in mice. In clinical isolates, this cost could be reduced, consistent with compensatory evolution stabilizing the presence of the resistant phenotype in the population. Thus, compensation is a clinically relevant phenomenon that can occur in vivo.</p><p>Furthermore, our results show that clinical use of antibiotics selects for stable resistance in the human microbiota. This is important for several reasons. First, many commensals occasionally can cause severe disease, even though they are part of the normal microbiota. Therefore, stably resistant populations increase the risk of unsuccessful treatment of such infections. Second, resistance in the normal microbiota might contribute to increased resistance development among pathogens by interspecies transfer of resistant determinants.</p>
243

Identification and Characterization of Biomarkers in Bacterial Infections

Storm, Martin January 2006 (has links)
<p>In recent years molecular biology has become an integral part of the clinical laboratory. With an ever increasing number of methodologies and applications being presented each year it has increased our knowledge of how bacteria cause disease as well as our ability to predict disease outcome. </p><p>The main focus of this thesis has been to develop methods for identifying biomarkers and prediction methods for bacterial infectious diseases by taking advantage of the ever increasing possibilities of molecular biology. We applied cutting edge techniques in order to establish novel platforms for identifying and characterizing biomarkers of disease. </p><p>In paper one we describe a novel approach to measure levels of antibiotic resistance and viability of C. trachomatis, a method that is a clear improvement over existing techniques. In the second paper we describe the development of two assays designed to type pertussis toxin subunit 1 in circulating strains, in order to facilitate multi center studies for vaccine escape surveillance. In paper three we develop a novel microarray application designed to identify a large number of bacterial traits of H. pylori simultaneously with human genetic polymorphisms in order to identify a collection of risk factors that could be used as a prediction tool for gastric cancer risk. In the last paper we define the “antigenome” of H. pylori and identified 14 promising, previously unreported antigens as well as a number of potential biomarkers.</p><p>The platform technologies described in this collection of papers will hopefully help us identifying novel ways of fighting and predicting bacterial disease in future studies. </p>
244

Microbial and maternal influences on allergic sensitization during childhood: defining a role for monocytes

Saghafian Hedengren, Shanie January 2009 (has links)
Allergic diseases are influenced by genetics and the environment. Maternal allergy appears to confer a higher risk for allergic sensitization than paternal allergy, suggesting an in utero influence. A decrease in particular infections or a lower exposure to microbial components during infancy is suggested to contribute to the high allergy prevalence in affluent societies. Toll-like receptors (TLR) 2 and 4 recognize peptidoglycan (PGN) and LPS respectively, are expressed on e.g. monocytes, and have been implicated in modulating the risk of IgE-sensitization. This thesis aimed to study the influence of maternal allergy and early microbial exposure on monocyte function and allergic sensitization during childhood. Blood samples from children participating in a prospective allergy cohort were used. Two-year old infants with allergic mothers had lower IL-6 production and reduced activation of the TLR-signalling intermediate p38-MAPK in response to PGN than children with non-allergic mothers. In 5-year old children, allergic disease and not maternal allergy influenced monocytic TLR2-regulation. Five-year olds who were seropositive for Epstein-Barr virus (EBV) at 2-years of age had a lower risk of persistent IgE-sensitization while EBV contraction after 2-years of age related to a higher risk of IgE-sensitization. Upon in vitro stimulation, NK cells from EBV+ 2-year olds produced lower IFN-g levels. EBV+ 2-year olds had also lower systemic IFN-g. In comparison to CD14++CD16- monocytes, CD14+CD16+ cells induced NK-cell IFN-g more potently in vitro, and EBV+ infants tended to have lower proportions of these CD14+CD16+ monocytes. This thesis highlights the importance of early-life microbial (EBV) exposure for a proper allergy-protective immunity. Also, maternal allergic heredity appears to influence monocytic microbial responses in early infancy. All these aspects relate to altered monocyte functionality, which suggest that they could have a role in allergic sensitization.
245

The Physiological Cost of Antibiotic Resistance

Macvanin, Mirjana January 2003 (has links)
Becoming antibiotic resistant is often associated with fitness costs for the resistant bacteria. This is seen as a loss of competitiveness against the antibiotic-sensitive wild-type in an antibiotic-free environment. In this study, the physiological alterations associated with fitness cost of antibiotic resistance in vitro (in the laboratory medium), and in vivo (in a mouse infection model), are identified in the model system of fusidic acid resistant (FusR) Salmonella enterica serovar Typhimurium. FusR mutants have mutations in fusA, the gene that encodes translation elongation factor G (EF-G). FusR EF-G has a slow rate of regeneration of active EF-G·GTP off the ribosome, resulting in a slow rate of protein synthesis. The low fitness of FusR mutants in vitro, and in vivo, can be explained in part by a slow rate of protein synthesis and resulting slow growth. However, some FusR mutants with normal rates of protein synthesis still suffer from reduced fitness in vivo. We observed that FusR mutants have perturbed levels of the global regulatory molecule ppGpp. One consequence of this is an inefficient induction of RpoS, a regulator of general stress reponse and an important virulence factor for Salmonella. In addition, we found that FusR mutants have reduced amounts of heme, a co-factor of catalases and cytochromes. As a consequence of the heme defect, FusR mutants have a reduced ability to withstand oxidative stress and a low rate of aerobic respiration. The pleiotropic phenotypes of FusR mutants suggest that antibiotic resistance can be associated with broad changes in bacterial physiology. Knowledge of physiological alterations that reduce the fitness of antibiotic-resistant mutants can be useful in identifying novel targets for antimicrobial agents. Drugs that alter the levels of global transcriptional regulators such as ppGpp or RpoS deserve attention as potential antimicrobial agents. Finally, the observation that FusR mutants have increased sensitivity to several unrelated classes of antibiotics suggests that the identification of physiological cost of resistance can help in optimizing treatment of resistant bacterial populations.
246

Development and Stability of Antibiotic Resistance

Sjölund, Maria January 2004 (has links)
Antibiotic resistance is of current concern. Bacteria have become increasingly resistant to commonly used antibiotics and we are facing a growing resistance problem. The present thesis was aimed at studying the impact of antibiotic treatment on pathogenic bacteria as well as on the normal human microbiota, with focus on resistance development. Among the factors that affect the appearance of acquired antibiotic resistance, the mutation frequency and biological cost of resistance are of special importance. Our work shows that the mutation frequency in clinical isolates of Helicobacter pylori was generally higher than for other studied bacteria such as Enterobacteriaceae; ¼ of the isolates displayed a mutation frequency higher than Enterobacteriaceae defective mismatch repair mutants and could be regarded as mutator strains. In H. pylori, clarithromycin resistance confers a biological cost, as measured by decreased competitive ability of the resistant mutants in mice. In clinical isolates, this cost could be reduced, consistent with compensatory evolution stabilizing the presence of the resistant phenotype in the population. Thus, compensation is a clinically relevant phenomenon that can occur in vivo. Furthermore, our results show that clinical use of antibiotics selects for stable resistance in the human microbiota. This is important for several reasons. First, many commensals occasionally can cause severe disease, even though they are part of the normal microbiota. Therefore, stably resistant populations increase the risk of unsuccessful treatment of such infections. Second, resistance in the normal microbiota might contribute to increased resistance development among pathogens by interspecies transfer of resistant determinants.
247

Identification and Characterization of Biomarkers in Bacterial Infections

Storm, Martin January 2006 (has links)
In recent years molecular biology has become an integral part of the clinical laboratory. With an ever increasing number of methodologies and applications being presented each year it has increased our knowledge of how bacteria cause disease as well as our ability to predict disease outcome. The main focus of this thesis has been to develop methods for identifying biomarkers and prediction methods for bacterial infectious diseases by taking advantage of the ever increasing possibilities of molecular biology. We applied cutting edge techniques in order to establish novel platforms for identifying and characterizing biomarkers of disease. In paper one we describe a novel approach to measure levels of antibiotic resistance and viability of C. trachomatis, a method that is a clear improvement over existing techniques. In the second paper we describe the development of two assays designed to type pertussis toxin subunit 1 in circulating strains, in order to facilitate multi center studies for vaccine escape surveillance. In paper three we develop a novel microarray application designed to identify a large number of bacterial traits of H. pylori simultaneously with human genetic polymorphisms in order to identify a collection of risk factors that could be used as a prediction tool for gastric cancer risk. In the last paper we define the “antigenome” of H. pylori and identified 14 promising, previously unreported antigens as well as a number of potential biomarkers. The platform technologies described in this collection of papers will hopefully help us identifying novel ways of fighting and predicting bacterial disease in future studies.
248

Early-life gut microbiota and breast milk oligosaccharides in relation to childhood immune maturation and allergy

Sjögren, Ylva Margareta January 2009 (has links)
Atopic allergy is the most common chronic disease among children in the developed world. This high prevalence could be associated with low microbial exposure. The early gut microbiota appears to be important for immune maturation. Immunomodulatory components in human milk might differ between mothers and could therefore explain the contradictory results seen regarding breastfeeding and allergy development. The aim of this thesis was to investigate whether early colonization with certain gut microbiota species influences childhood immune responses and allergy development up to age five. Also, as human milk oligosaccharides (HMOs) might stimulate the growth of certain gut microbiota species, the consumption of neutral colostrum HMOs was investigated for their role in allergy development up to 18 months. The concentrations of neutral colostrum HMOs varied considerably between women; however this variation could not be explained by their allergic status. Neither was the consumption of neutral colostrum HMOs related to allergy development in their children up to 18 months. Infants who harboured lactobacilli group I and Bifidobacterium adolescentis one week after birth developed allergic disease less frequently during their first five years than infants who did not harbour these bacteria at the same time. Also, colonization with several Bifidobacterium species was associated with higher levels of house dust endotoxin and larger family size. The early Bifidobacterium flora influenced levels of salivary secretory IgA at six and 12 months but not during later childhood. Moreover, the intensity of early Bacteroides fragilis colonization was inversely associated with spontaneous Toll-like receptor 4 mRNA expression in peripheral blood cells collected 12 months after birth. In conclusion, these results indicate that the early infant gut microbiota influences systemic and mucosal immune maturation during infancy, and that it might be altered in infants developing allergic disease.
249

Antibody responses and Fc gamma receptor IIa polymorphism in relation to Plasmodium falciparum malaria

Iriemenam, Nnaemeka C. January 2009 (has links)
Immunity to asexual blood-stage of Plasmodium falciparum malaria is believed to be associated with protective antibodies of certain immunoglobulin classes and subclasses. This thesis addressed the importance of antibodies in relation to malaria infection and their effective interactions with Fc gamma receptor IIa (FcyRIIa) polymorphisms. Our data indicate that the frequency of FcyRIIa-R/R131 genotype was statistically significantly higher in Sudanese patients with severe malaria, while the FcyRIIa-H/H131 genotype showed a significant association with mild malaria. The levels of IgG1 and IgG3 subclass antibodies were statistically higher in the mild malaria patients. The Fulani ethnic group in West Africa has been shown to be relatively resistant to malaria. We investigated the possible impact of FcyRIIa polymorphisms in the Fulani and non-Fulani in Mali and Sudan, and analysed their malaria-reactive IgG subclass profiles. The FcyRIIa-H/H131 genotype and H131-allele were found to be prevalent in the Fulani while R131-allele was prevalent in non-Fulani. The Fulani had higher serum levels of IgG1-3, with higher proportion of IgG2 than the non-Fulani. Most clinico-epidemiology studies have been in areas with holo- and hyper-malaria endemicity. We have analysed antibody responses to a panel of six blood-stage antigens in relation to clinical malaria outcome in mesoendemic Sudan. Our results revealed a linear association with anti-AMA-1 IgG1 antibodies and reduced risk of severe malaria while a non-linear relationship with IgG3 antibodies was observed for MSP-2, MSP-3 and GLURP. In the combined final model, the highest levels of IgG1 subclass antibodies to AMA-1, GLURP-R0, and the highest levels of IgG3 subclass antibodies reactive to 3D7 MSP-2 were independently associated with a reduced risk of clinical malaria. Taken together, these data suggest a possible association between FcyRIIa-R/H131 and anti-malarial antibody responses in the clinical outcome of malaria.
250

Towards Immunotherapy of Midgut Carcinoid Tumors

Vikman, Sofia January 2008 (has links)
Classical midgut carcinoids belong to neuroendocrine tumors of the gastroenteropancreatic tract (GEP-NETs) and are associated with serotonin overproduction. The term midgut is derived from the tumors’ embryological site of origin: enterochromaffin cells in the lower jejunum, ileum, caecum and the ascending colon. Despite their rather benign nature, these tumors can metastasize to mesentery and liver, putting patients at risk for the so-called carcinoid syndrome. This syndrome is characterized by flushes, diarrhoea and valvular heart disease due to the excessive serotonin secretion by tumor cells. Treatment of metastatic disease is currently ineffective and T cell immunotherapy has been suggested as a novel approach. We propose a number of midgut carcinoid-associated proteins as potential antigens for immunotherapy. Chromogranin A (CGA), tryptophan hydroxylase 1 (TPH-1), vesicular monoamine transporter 1 (VMAT-1), caudal type homeobox transcription factor 2 (CDX-2), islet autoantigen 2 (IA-2) and survivin represent interesting candidates based on their fairly restricted neuroendocrine tissue expression. In pursuit of potential antigens we identified a novel splicing variant of VMAT-1, lacking the second last exon. The variant, denoted VMAT1Δ15, encodes a differently translated C-terminal compared to the native form, is localized in the endoplasmic reticulum (ER) instead of large dense core vesicles and is unable to accumulate serotonin. We identify several immunogenic HLA-A*0201-binding peptide epitopes derived from our proposed antigens by analyzing CD8+ T cell responses in blood from midgut carcinoid patients. We demonstrate immune recognition of midgut carcinoid tumors in patients and in vitro generation of activated CD8+ T cells recognizing these peptide epitopes in blood from healthy controls. Patients also exhibit increased frequencies of circulating regulatory T cells (Tregs) with suppressive quality and patient lymphocytes display a decreased proliferative capacity compared to healthy controls. Midgut carcinoid tumors are frequently infiltrated by T cells, however always in the presence of Foxp3-expressing Tregs. Midgut carcinoid-associated antigens recognized by CD8+ T cells are of great interest for cellular therapies such as modified DC vaccines or adoptive T cell transfer. However, the systemic and local suppression of Th1 immunity must be considered and likely corrected in order to obtain clinically effective immunotherapies.

Page generated in 0.4416 seconds