• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Complete Genome Sequence of the Hyperthermophilic Bacteria - Thermotoga SP. Strain RQ7

Puranik, Rutika 21 April 2015 (has links)
No description available.
2

Genetic Modification of Thermotoga to Degrade Cellulose

Xu, Hui 22 July 2015 (has links)
No description available.
3

Moving Towards Water Security: Mitigating Emerging Contaminants in Treated Wastewater for Sustainable Reuse

Augsburger, Nicolas 04 1900 (has links)
Continuous increases in the interest and implementation of wastewater reuse due to intensified water stress has escalated the concerns of emerging contaminants. Among emerging contaminants there are microbial (antibiotic resistance) and chemical (pharmaceuticals) elements which have been shown to survive wastewater treatment. This dissertation aims to mitigate emerging contaminants by means of understanding and/or developing the appropriate disinfection strategies, with the intention to provide knowledge that would facilitate towards safe and sustainable water reuse. The first part of this thesis explored microbial risk component of antibiotic resistance. Antibiotic resistance genes are abundant in treated wastewater, and only pose a risk if taken up by potential pathogens through natural transformation. Our results showed that solar irradiation can double natural transformation rates, mediated by reactive oxygen species generation, which led to upregulation in DNA repair and competence genes in Acinetobacter baylyi ADP1. Treatment with UV-C254 nm irradiation also resulted in upregulation in DNA repair genes, nevertheless we observed a decrease in natural transformation rates. These results imply that direct damage of antibiotic resistance genes (ARG) could inhibit their spread and therefore risk, despite other factors contributing to the contrary. The next chapter in this dissertation postulated that the UV/H2O2 combination would be ideal to treat microbial and chemical emerging contaminants in effluent generated from an anaerobic membrane bioreactor. We demonstrated that at an optimal UV intensity and H2O2 concentration, we were able to achieve a 2 and 6-log reduction of the two antibiotic resistance genes and bacteria and used in this study, respectively, and more than 90% removal of the three pharmaceutical compounds. These observations suggest that UV/H2O2 has great potential in treating effluent with high nitrogen concentrations, preserving the fertilization benefit of AnMBR effluent. Overall, this dissertation revealed the potential of UV-based treatments for treated wastewater intended for reuse. Post-membrane processes effluent allows one to deploy UV-C254 nm to selectively target DNA and therefore ARB and ARG that may be still present in the treated wastewater. At the same time, coupling chemical oxidants with UV-C (i.e., UV AOP) would further enhance the means to simultaneously oxidize and degrade potentially harmful chemical contaminants.
4

Towards Novel Methods of Mutagenesis for Histophilus somni

Shah, Nehal Rajendra 27 July 2012 (has links)
Histophilus somni is an etiologic agent of shipping fever pneumonia, myocarditis, and other systemic diseases in bovines, although nonpathogenic commensal strains also exist. Virulence factors that have been identified in H. somni include biofilm formation, lipooligosaccharide phase variation, immunoglobulin binding proteins, survival in phagocytic cells, and many others. To identify genes responsible for virulence, an efficient mutagenesis system is needed. Mutagenesis of H. somni using allelic exchange is difficult due to its tight restriction modification system. Mutagenesis by natural transformation in Haemophilus influenzae is well established and may be enhanced by the presence of uptake signal sequences (USS) within the genome. We hypothesized that natural transformation occurs in H. somni because its genome is over-represented with USS and contains all the necessary genes for competence, except that ComD and ComE are mutated. For natural transformation, H. somni was grown to exponential phase, and then transferred to a non-growth defined medium to induce competence. H. somni strain 2336 was successfully transformed with homologous linear DNA (lob2A) containing an antibiotic marker gene, but at low efficiency. Shuttle vector pNS3K was also naturally transformed into H. somni at low efficiency. To attempt to improve transformation efficiency, comD and comE from H. influenzae were cloned into shuttle vector pNS3K to generate the plasmid pSScomDE. Although introduction of pSScomDE into H. somni was expected to increase the number and breadth of mutants generated by natural transformation, multiple attempts to electroporate pSScomDE into H. somni were unsuccessful. A native plasmid (pHS649) from H. somni strain 649 may prove to be a more efficient shuttle vector. Due to inefficiency in generating mutants by allelic exchange, transposon (Tn) mutagenesis with EZ / Master of Science
5

Sulphonamide Resistance in <i>Neisseria meningitidis</i> and Commensal <i>Neisseria</i> Species

Qvarnström, Yvonne January 2003 (has links)
<p>Extensive use of the sulphonamide drugs against the bacterium <i>Neisseria meningitidis</i> has resulted in drug resistance development. Sulphonamide resistance in <i>N. meningitidis</i> is caused by alterations in the chromosomal <i>folP</i> gene, coding for DHPS (dihydropteroate synthase). One type of resistant DHPS has high sequence divergence compared to DHPS from susceptible strains. This divergent DHPS has a duplication of two amino acids, crucial for resistance, and an altered amino acid in position 68, important for both resistance and substrate binding. When introduced into a susceptible DHPS, these two alterations did not incur resistance and resulted in abnormal substrate binding properties. This indicated that the divergent DHPS was not directly developed by mutations, but rather had been acquired by horizontal transfer of <i>folP</i> from another species.</p><p>Commensal <i>Neisseria</i> species are implied as the origin of the horizontally transferred resistance. Sulphonamide-resistant commensal <i>Neisseria</i> isolates were detected in throat swabs from healthy individuals not exposed to these drugs; however, transformation of resistance from these commensals to <i>N. meningitidis</i> was restricted in the laboratory. A comparison of the genomic region surrounding <i>folP</i> revealed differences in gene organisation and in the DNA uptake sequence between <i>N. meningitidis</i> and distantly related commensals. These differences are likely to restrict transformation between distantly related <i>Neisseria</i> species.</p><p>DHPS participates in the folate biosynthesis pathway. The enzyme preceding DHPS in the pathway, HPPK (hydroxymethyl-dihydropterin pyrophosphokinase), from <i>N. meningitidis</i> was characterised and a method for studying substrate channelling from HPPK to DHPS was developed. The information gained could be exploited in the search for new antibiotics.</p><p>In conclusion, well-adapted sulphonamide-resistant strains of <i>N. meningitidis</i> and commensal <i>Neisseria</i> are established in the bacterial population and resistance can be horizontally spread by natural transformation. This may explain the abundance of sulphonamide-resistant <i>N. meningitidis</i>, although these drugs are no longer used against this bacterium.</p>
6

Sulphonamide Resistance in Neisseria meningitidis and Commensal Neisseria Species

Qvarnström, Yvonne January 2003 (has links)
Extensive use of the sulphonamide drugs against the bacterium Neisseria meningitidis has resulted in drug resistance development. Sulphonamide resistance in N. meningitidis is caused by alterations in the chromosomal folP gene, coding for DHPS (dihydropteroate synthase). One type of resistant DHPS has high sequence divergence compared to DHPS from susceptible strains. This divergent DHPS has a duplication of two amino acids, crucial for resistance, and an altered amino acid in position 68, important for both resistance and substrate binding. When introduced into a susceptible DHPS, these two alterations did not incur resistance and resulted in abnormal substrate binding properties. This indicated that the divergent DHPS was not directly developed by mutations, but rather had been acquired by horizontal transfer of folP from another species. Commensal Neisseria species are implied as the origin of the horizontally transferred resistance. Sulphonamide-resistant commensal Neisseria isolates were detected in throat swabs from healthy individuals not exposed to these drugs; however, transformation of resistance from these commensals to N. meningitidis was restricted in the laboratory. A comparison of the genomic region surrounding folP revealed differences in gene organisation and in the DNA uptake sequence between N. meningitidis and distantly related commensals. These differences are likely to restrict transformation between distantly related Neisseria species. DHPS participates in the folate biosynthesis pathway. The enzyme preceding DHPS in the pathway, HPPK (hydroxymethyl-dihydropterin pyrophosphokinase), from N. meningitidis was characterised and a method for studying substrate channelling from HPPK to DHPS was developed. The information gained could be exploited in the search for new antibiotics. In conclusion, well-adapted sulphonamide-resistant strains of N. meningitidis and commensal Neisseria are established in the bacterial population and resistance can be horizontally spread by natural transformation. This may explain the abundance of sulphonamide-resistant N. meningitidis, although these drugs are no longer used against this bacterium.
7

Identification du système de transformation naturelle de Legionella pneumophila / Identification of the DNA uptake system of Legionella pneumophila

Juan, Pierre-Alexandre 16 December 2015 (has links)
Sous des conditions de croissance particulières, certaines bactéries sont capables d'entrer en état de « compétence » pour la transformation naturelle, c'est-à-dire d'exprimer un ensemble de gènes nécessaires à la mise en place d'un système d'import d'ADN exogène dont l'intégration conduit à une transformation génétique et phénotypique. C'est le cas de Legionella pneumophila, bactérie environnementale et agent étiologique de la légionellose. La transformation naturelle a potentiellement participé à l'évolution du génôme de L. pneumophila.Ainsi, l'objectif premier de cette thèse était de décrire les composants principaux du système de transformation naturelle de L. pneumophila, ainsi que son activation et rôle potentiel dans la relation de la bactérie avec ses hôtes. Des méthodes d'analyse transcriptomique et de mutagénèse dirigée ont permis d'identifier les principaux gènes impliqués dans la mise en place du système de transformation naturelle qui, de façon cohérente avec un rôle adaptatif, ne semble pas impliqué dans la virulence bactérienne. Le système inclut un pilus de transformation, structure fréquemment observée chez les espèces naturellement transformables. Le rôle de la protéine structurale MreB dans le mécanisme de transformation naturelle a également été étudié. En proposant un premier modèle du système de transformation naturelle de L. pneumophila, ces travaux ouvrent la voie à une analyse plus détaillée de la dynamique du système et, plus généralement, à une meilleure compréhension des mécanismes de la transformation naturelle chez les bactéries Gram-négatives / Under certain growth conditions, some bacteria are able to develop a « competence » state for natural transformation, that is, to express a panel of genes involved in the assembly of a DNA uptake system that allows bacteria to take up and recombine free exogenous DNA, leading to a genetic and phenotypic transformation. Natural transformation may have played a role in the evolution of the L. pneumophila genome.Thus, the main objective of this work was to describe the main components of the L. pneumophila DNA uptake system and to investigate its role regarding the host-pathogen interaction. Transcriptomic analysis and directed mutagenesis permitted to identify the main components of the system which is not involved in bacterial virulence. The system include a transformation pilus that is a structure frequently found in transformable species. The role of the structural protein MreB has also been investigated.By describing a first model of the natural transformation system of L. pneumophila, this work paves the way to a deeper analysis of the system dynamics and, more generally, to a better understanding of natural transformation in Gram-negative species
8

Etude des premières étapes de la transformation naturelle chez Helicobacter pylori / Study of the early steps of natural transformation in Helicobacter pylori

Corbinais, Christopher 03 December 2015 (has links)
H. pylori est une bactérie à Gram négatif qui infecte l'estomac de près de 50% de la population mondiale. L'infection, en général asymptomatique, peut évoluer vers l'ulcère gastrique (15% des cas) ou le cancer de l'estomac (1% des cas). L'infection à H. pylori est traitée par antibiothérapie mais ces dernières années ont vu une augmentation du nombre de souches résistantes. Cette augmentation et la forte prévalence d'H. pylori sont probablement dues à son importante variabilité génétique qui a pour origine un fort taux de mutagénèse spontanée, associée à une recombinaison efficace et un important transfert horizontal de gènes. H. pylori est en effet naturellement compétente pour la transformation qui est le processus biologique permettant la capture, l'internalisation et l'intégration d'ADN exogène dans le génome de la bactérie. Ce processus favorise la diversité génétique au sein d'une population et peut permettre son adaptation rapide aux changements environnementaux. Durant ma thèse, j'ai participé au développement d'une méthode permettant de visualiser la transformation d'ADN fluorescent dans des cellules de H. pylori vivante. Cette méthode nous a permis, pour la première fois, de visualiser directement l'entrée d'un ADN transformant dans le cytoplasme d'une bactérie compétente. Elle nous a également permis de confirmer le rôle de la protéine ComEC dans l'internalisation de l'ADN dans le cytoplasme. Le travail que j'ai réalisé a également permis de mettre en évidence que le niveau de transformation de H. pylori est déterminé par le niveau d'expression du complexe membranaire d'internalisation. La quantité d'ADN capturée serait alors un facteur limitant pour la transformation. / H. pylori is a Gram negative flagellar bacterium that colonizes nearly 50% of the world population. Infection is generally asymptotic but can evolve to ulcerous gastritis (15% of the cases) or stomach cancer (1% of the cases). H. pylori infection is usually treated with antibiotic but the last years saw a dramatic increase in the number of resistant strains. This increase, and the high prevalence of H. pylori, are probably caused by its huge genetic variability likely due to a strong mutagenesis rate associated with efficient recombination and horizontal gene transfer. H. pylori is indeed naturally competent for transformation which is the biological process allowing capture, internalization and integration of exogenous DNA in the genome of a bacterium. This process promotes genetic diversity in a population and could permit rapid adaptation to environmental changes. During my thesis, I participated to the development of a method to visualize transformation in H. pylori living cells. Using fluorescently labelled DNA, this method allowed us for the first time to follow directly the entry of a transforming DNA into the cytoplasm of competent bacteria. It also allowed us to confirm the role of the ComEC protein in the internalization of the DNA in the cytoplasm. The work I performed also allowed to show that the level of expression of the uptake complex determines the transformation efficiency of H. pylori. The amount of captured DNA would then be a limiting factor for the transformation in this bacterium. Finally, I initiated the biochemical and genetic characterization of the NucT protein, a nuclease associated to the membrane and implicated in the transformation.
9

Study of the natural transformation pilus in streptococcus pneumoniae / Etude du pilus de transformation chez streptococcus pneumoniae

Laurenceau, Raphael 18 September 2014 (has links)
La transformation naturelle est la capacité de certaines bactéries à incorporer et à recombiner activement de l’ADN extra-cellulaire. Ce procédé majeur augmente la plasticité et l’adaptabilité des bactéries à Gram positif et négatif en réalisant des échanges génétiques intra- et inter-espèces. S. pneumoniae est un pathogène majeur de l’Homme. Cette bactérie est responsable d’infections sévères telles que des pneumonies, des méningites et des septicémies. Dans cette espèce, la transformation naturelle est corrélée au phénomène de changement de capsule et à la baisse d’efficacité des vaccins. La plupart des bactéries à Gram positif naturellement transformables possèdent un opéron comG, semblable aux opérons codant pour la famille des pili de type IV, extrêmement répandus chez les bactéries à Gram négatif. Il a été proposé que l’opéron comG est responsable de la formation d’un petit filament, nommé pseudo- pilus. Cependant, un tel filament n’a jamais été observé. Par des techniques de mutagenèse, de caractérisation biochimique, de microscopie optique et électronique, nous sommes parvenus à identifier des filaments de plusieurs micromètres de long à la surface de bactéries S. pneumoniae compétentes. Nous avons confirmé l’appartenance de ces filaments à la famille des pili de type IV. Par conséquent, nous avons infirmé l’hypothèse de la formation d’un pseudo-pilus par l’opérons comG chez S. pneumoniae. De plus, nous avons montré que les pili se lient à l’ADN et qu’ils sont requis pour la capture de l’ADN extra-cellulaire. Ces résultats apportent des informations cruciales concernant les premières étapes de capture de l’ADN durant la transformation naturelle. Nous proposons un nouveau modèle dans lequel le pilus agirait comme un « piège à ADN », capturant l’ADN à la surface des bactéries compétentes pour le guider jusqu’au pore d’entrée dans la cellule. / Natural transformation is the ability of bacteria to actively take up and recombine extracellular DNA. This crucial process increases genome plasticity and adaptability of Gram-negative and Gram-positive bacteria through intra- and inter-species genetic exchange. S. pneumoniae is a major human pathogen responsible for severe diseases such as pneumonia, meningitis and septicemia. In this species, transformation has been linked to capsular serotype switching and reduced vaccine efficiency. Most transformable Gram-positive bacteria carry a comG operon that resembles operons encoding a widespread family of pili in Gram-negative bacteria, the type IV pili. It has been commonly proposed that the comG operon is responsible for the formation of a short pseudo-pilus filament. However, such an appendage had never been visualized in any bacterium. By mutagenesis, biochemical characterization, optical and electron microscopy techniques we were able to identify long, micrometer-sized appendages protruding from the surface of competent S. pneumoniae. We confirmed the Type IV pili nature of these appendages, we showed that they bind DNA, and are absolutely required for DNA uptake. We consequently overthrew the pseudopilus hypothesis at least in S. pneumoniae, and provided crucial information concerning the initial step of DNA uptake. We propose a revised model in which the transformation pilus acts as a “DNA trap” capturing DNA at the surface of competent cells, guiding it to the translocation channel.
10

Mécanismes moléculaires de la transformation génétique naturelle chez la bactérie pathogène Helicobacter pylori / Molecular mechanisms of horizontal gene transfer in pathogen Helicobacter pylori

Celma, Louisa 03 April 2019 (has links)
Helicobacter pylori est une bactérie à Gram-négatif qui colonise la muqueuse de l’estomac humain. Elle se distingue des autres bactéries par un nombre de gènes très limité et de nombreuses particularités physiologiques et biochimiques. Elle provoque des infections associées à différentes maladies gastro-duodénales (ulcères et cancers). Depuis quelques années, une recrudescence de multi-résistances aux antibiotiques est observée. La transformation naturelle est l’un des processus clés qui les propage. Il s’agit d’un mécanisme de transfert horizontal de gènes qui permet aux bactéries de s’adapter à leur environnement, en internalisant des fragments d’ADN exogène à travers leur membrane, puis en les intégrant dans le chromosome par recombinaison homologue. Mes travaux ont visé à étudier de façon structurale et fonctionnelle trois protéines d’H. pylori décrites comme étant essentielles dans le processus de transformation naturelle: NucT, DprA et ComFc. La première partie de ce travail s’est concentrée sur la nucléase périplasmique NucT, supposée être impliquée dans la transformation chez H. pylori. Cependant, la délétion de son gène a permis de démontrer qu’elle ne joue en fait qu’un rôle mineur dans ce processus. La résolution de sa structure 3D a permis de mieux comprendre sa spécificité pour les acides nucléiques simple brin. Dans la seconde partie, la protéine DprA, responsable du chargement de la recombinase RecA sur l’ADN internalisé, a été étudiée. DprA d’H. pylori n’est composée que de 2 des 3 domaines qui constituent habituellement DprA, et fixe aussi bien l’ADN double brin que l’ADN simple brin mais uniquement via son domaine RF. Malgré son homologie structurale avec le domaine WH de liaison à l’ADN, le domaine C-terminal de HpDprA n’a pas d’affinité pour l’ADN. Nous avons mis en évidence des acides aminés conservés dans ce domaine dont l’étude pourrait permettre de comprendre son rôle. Enfin, une étude structurale de la protéine ComFc dont la délétion du gène entraîne la disparition totale de la capacité de transformation d’H. pylori a été réalisée. L’obtention de sa structure 3D a permis de mettre en évidence la présence d’un domaine catalytique phosphoribosyl-transférase ainsi que d’un domaine en doigt en zinc. Ce dernier pourrait être responsable de la capacité de ComFc à fixer l’ADN. Le substrat naturel de cette enzyme reste à découvrir.L’ensemble de ce travail a permis de contribuer à une meilleure compréhension à l’échelle moléculaire du mécanisme de transformation génétique naturelle d’H. pylori. L’avancement sur ces connaissances pourrait à long terme aider à réduire la propagation des multi-résistances par l’élaboration de nouvelles thérapies.Mots-clés : H. pylori, transformation naturelle, NucT, DprA, ComFc, interaction protéine-ADN / Helicobacter pylori is a Gram-negative bacterium that colonizes the mucus of the human stomach. It is distinguished from other bacteria by a limited number of genes and many physiological and biochemical characteristics. It causes infections associated with various gastro-duodenal diseases (ulcers and gastric cancers). In recent years, an increase in multi-resistance to antibiotics has been observed. Natural transformation is one of the key processes that spreads these multi-resistances. It is a horizontal gene transfer mechanism that allows bacteria to adapt to their environment by internalizing exogenous DNA fragments through their membrane and then integrating them into the chromosome by homologous recombination. My work aimed to study in a structural and functional approach three proteins of H. pylori described as essential in the natural transformation process: NucT, DprA and ComFc. The first part of this work focused on periplasmic nuclease, NucT, which is supposed to be involved in transformation in H. pylori. However, the deletion of its gene has shown that it actually plays only a minor role in this process. The resolution of its 3D structure has led to a better understanding of its specificity for single-stranded nucleic acids. In the second part, the protein DprA, responsible for loading RecA recombinase onto internalized DNA, was studied. HpDprA is composed of only 2 of the 3 domains that usually constitute DprA, and binds both double-stranded and single-stranded DNA but only via its RF domain. Despite its structural homology with the WH DNA binding domain, the C-terminal domain of HpDprA has no affinity for DNA. We have identified conserved amino acids in this domain that could be studied to understand its role. Finally, a structural study of ComFc, whose deletion of the gene leads to the total disruption of the transformation capacity of H. pylori, has been carried out. The acquisition of its 3D structure has highlighted the presence of a phosphoribosyl transferase catalytic domain as well as a zinc finger domain. The latter could be responsible for capacity of ComFc to bind DNA. The natural substrate of this enzyme remains to be discovered.All this work has contributed to a better knowledge at the molecular level of the natural genetic transformation mechanism of H. pylori. Advancing this knowledge could in the long term help to reduce the spread of multiresistance through the development of new therapies.Keywords: Helicobacter pylori, natural transformation, NucT, DprA, ComFc, protein-DNA interaction

Page generated in 0.1338 seconds