• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des premières étapes de la transformation naturelle chez Helicobacter pylori / Study of the early steps of natural transformation in Helicobacter pylori

Corbinais, Christopher 03 December 2015 (has links)
H. pylori est une bactérie à Gram négatif qui infecte l'estomac de près de 50% de la population mondiale. L'infection, en général asymptomatique, peut évoluer vers l'ulcère gastrique (15% des cas) ou le cancer de l'estomac (1% des cas). L'infection à H. pylori est traitée par antibiothérapie mais ces dernières années ont vu une augmentation du nombre de souches résistantes. Cette augmentation et la forte prévalence d'H. pylori sont probablement dues à son importante variabilité génétique qui a pour origine un fort taux de mutagénèse spontanée, associée à une recombinaison efficace et un important transfert horizontal de gènes. H. pylori est en effet naturellement compétente pour la transformation qui est le processus biologique permettant la capture, l'internalisation et l'intégration d'ADN exogène dans le génome de la bactérie. Ce processus favorise la diversité génétique au sein d'une population et peut permettre son adaptation rapide aux changements environnementaux. Durant ma thèse, j'ai participé au développement d'une méthode permettant de visualiser la transformation d'ADN fluorescent dans des cellules de H. pylori vivante. Cette méthode nous a permis, pour la première fois, de visualiser directement l'entrée d'un ADN transformant dans le cytoplasme d'une bactérie compétente. Elle nous a également permis de confirmer le rôle de la protéine ComEC dans l'internalisation de l'ADN dans le cytoplasme. Le travail que j'ai réalisé a également permis de mettre en évidence que le niveau de transformation de H. pylori est déterminé par le niveau d'expression du complexe membranaire d'internalisation. La quantité d'ADN capturée serait alors un facteur limitant pour la transformation. / H. pylori is a Gram negative flagellar bacterium that colonizes nearly 50% of the world population. Infection is generally asymptotic but can evolve to ulcerous gastritis (15% of the cases) or stomach cancer (1% of the cases). H. pylori infection is usually treated with antibiotic but the last years saw a dramatic increase in the number of resistant strains. This increase, and the high prevalence of H. pylori, are probably caused by its huge genetic variability likely due to a strong mutagenesis rate associated with efficient recombination and horizontal gene transfer. H. pylori is indeed naturally competent for transformation which is the biological process allowing capture, internalization and integration of exogenous DNA in the genome of a bacterium. This process promotes genetic diversity in a population and could permit rapid adaptation to environmental changes. During my thesis, I participated to the development of a method to visualize transformation in H. pylori living cells. Using fluorescently labelled DNA, this method allowed us for the first time to follow directly the entry of a transforming DNA into the cytoplasm of competent bacteria. It also allowed us to confirm the role of the ComEC protein in the internalization of the DNA in the cytoplasm. The work I performed also allowed to show that the level of expression of the uptake complex determines the transformation efficiency of H. pylori. The amount of captured DNA would then be a limiting factor for the transformation in this bacterium. Finally, I initiated the biochemical and genetic characterization of the NucT protein, a nuclease associated to the membrane and implicated in the transformation.
2

Mécanismes moléculaires de la transformation génétique naturelle chez la bactérie pathogène Helicobacter pylori / Molecular mechanisms of horizontal gene transfer in pathogen Helicobacter pylori

Celma, Louisa 03 April 2019 (has links)
Helicobacter pylori est une bactérie à Gram-négatif qui colonise la muqueuse de l’estomac humain. Elle se distingue des autres bactéries par un nombre de gènes très limité et de nombreuses particularités physiologiques et biochimiques. Elle provoque des infections associées à différentes maladies gastro-duodénales (ulcères et cancers). Depuis quelques années, une recrudescence de multi-résistances aux antibiotiques est observée. La transformation naturelle est l’un des processus clés qui les propage. Il s’agit d’un mécanisme de transfert horizontal de gènes qui permet aux bactéries de s’adapter à leur environnement, en internalisant des fragments d’ADN exogène à travers leur membrane, puis en les intégrant dans le chromosome par recombinaison homologue. Mes travaux ont visé à étudier de façon structurale et fonctionnelle trois protéines d’H. pylori décrites comme étant essentielles dans le processus de transformation naturelle: NucT, DprA et ComFc. La première partie de ce travail s’est concentrée sur la nucléase périplasmique NucT, supposée être impliquée dans la transformation chez H. pylori. Cependant, la délétion de son gène a permis de démontrer qu’elle ne joue en fait qu’un rôle mineur dans ce processus. La résolution de sa structure 3D a permis de mieux comprendre sa spécificité pour les acides nucléiques simple brin. Dans la seconde partie, la protéine DprA, responsable du chargement de la recombinase RecA sur l’ADN internalisé, a été étudiée. DprA d’H. pylori n’est composée que de 2 des 3 domaines qui constituent habituellement DprA, et fixe aussi bien l’ADN double brin que l’ADN simple brin mais uniquement via son domaine RF. Malgré son homologie structurale avec le domaine WH de liaison à l’ADN, le domaine C-terminal de HpDprA n’a pas d’affinité pour l’ADN. Nous avons mis en évidence des acides aminés conservés dans ce domaine dont l’étude pourrait permettre de comprendre son rôle. Enfin, une étude structurale de la protéine ComFc dont la délétion du gène entraîne la disparition totale de la capacité de transformation d’H. pylori a été réalisée. L’obtention de sa structure 3D a permis de mettre en évidence la présence d’un domaine catalytique phosphoribosyl-transférase ainsi que d’un domaine en doigt en zinc. Ce dernier pourrait être responsable de la capacité de ComFc à fixer l’ADN. Le substrat naturel de cette enzyme reste à découvrir.L’ensemble de ce travail a permis de contribuer à une meilleure compréhension à l’échelle moléculaire du mécanisme de transformation génétique naturelle d’H. pylori. L’avancement sur ces connaissances pourrait à long terme aider à réduire la propagation des multi-résistances par l’élaboration de nouvelles thérapies.Mots-clés : H. pylori, transformation naturelle, NucT, DprA, ComFc, interaction protéine-ADN / Helicobacter pylori is a Gram-negative bacterium that colonizes the mucus of the human stomach. It is distinguished from other bacteria by a limited number of genes and many physiological and biochemical characteristics. It causes infections associated with various gastro-duodenal diseases (ulcers and gastric cancers). In recent years, an increase in multi-resistance to antibiotics has been observed. Natural transformation is one of the key processes that spreads these multi-resistances. It is a horizontal gene transfer mechanism that allows bacteria to adapt to their environment by internalizing exogenous DNA fragments through their membrane and then integrating them into the chromosome by homologous recombination. My work aimed to study in a structural and functional approach three proteins of H. pylori described as essential in the natural transformation process: NucT, DprA and ComFc. The first part of this work focused on periplasmic nuclease, NucT, which is supposed to be involved in transformation in H. pylori. However, the deletion of its gene has shown that it actually plays only a minor role in this process. The resolution of its 3D structure has led to a better understanding of its specificity for single-stranded nucleic acids. In the second part, the protein DprA, responsible for loading RecA recombinase onto internalized DNA, was studied. HpDprA is composed of only 2 of the 3 domains that usually constitute DprA, and binds both double-stranded and single-stranded DNA but only via its RF domain. Despite its structural homology with the WH DNA binding domain, the C-terminal domain of HpDprA has no affinity for DNA. We have identified conserved amino acids in this domain that could be studied to understand its role. Finally, a structural study of ComFc, whose deletion of the gene leads to the total disruption of the transformation capacity of H. pylori, has been carried out. The acquisition of its 3D structure has highlighted the presence of a phosphoribosyl transferase catalytic domain as well as a zinc finger domain. The latter could be responsible for capacity of ComFc to bind DNA. The natural substrate of this enzyme remains to be discovered.All this work has contributed to a better knowledge at the molecular level of the natural genetic transformation mechanism of H. pylori. Advancing this knowledge could in the long term help to reduce the spread of multiresistance through the development of new therapies.Keywords: Helicobacter pylori, natural transformation, NucT, DprA, ComFc, protein-DNA interaction

Page generated in 0.0212 seconds