• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of glutamine in exercise-induced changes in immune function

Hiscock, N. J. Unknown Date (has links)
No description available.
2

The synergistic benefits of combining innate immune stimulators into nanoparticle adjuvants for intradermal vaccination

Juan F Hernandez Franco (15353443) 28 April 2023 (has links)
<p>  </p> <p>The study presented within demonstrates that Nano-11, a plant-derived nanoparticle adjuvant, can be utilized in conjunction with innate immune stimulators, including the TLR3 agonist poly(I:C) and the STING agonist cyclic-di-AMP, to provoke enhanced immune responses when administered through intradermal vaccines. The study demonstrated that the utilization of a combination adjuvant consisting of Nano-11 and a synthetic STING agonist, ADU-S100, in intradermal vaccination exhibited dose-sparing characteristics and resulted in enhanced immunity in both mice and pigs when compared to intramuscular immunization. The utilization of Nano-11-based adjuvant technology has demonstrated both prophylactic and therapeutic efficacy in mouse models of lymphoma and melanoma. The proposed adjuvant platform for intradermal vaccines, which is based on Nano-11, aims to enhance the accessibility of vaccines for the purposes of controlling infectious diseases and cancers.</p>
3

DIETARY MODULATION OF MYELOID DERIVED SUPPRESSOR CELL BIOLOGY IN PATHOPHYSIOLOGY AND PHYSIOLOGY

Ryan D Calvert (6554648) 15 May 2019 (has links)
T-cells are present in the immune system to fight against invaders. Once their job is done, suppressing their activity is an important step in maintaining a proper immune response. Myeloid derived suppressor cells (MDSCs) are immune cells that suppress T-cell activity. Currently, MDSCs are defined as a heterogeneous population of immature cells that are derived in the bone marrow and travel to the site of inflammation or cancer. Two major subtypes of MDSCs have been identified in mice and humans, monocyte-like MDSCs (M-MDSC) and granulocyte MDSCs (G-MDSC). G-MDSCs typically make up the majority of the total population of MDSCs but are less T-cell suppressive than M-MDSCs. One of the major problems in the study of MDSCs is that the current marker system for subtypes does not differentiate between precursor MDSCs (lacking suppressive ability) and functional MDSCs (those with suppressive ability). Therefore, using cancer models in mice, we investigated the development and potential to classify precursor MDSCs from functional MDSCs. While MDSCs have been highlighted as a target cell to inhibit in cancer, in other conditions, such as pregnancy, MDSCs have been shown to be beneficial in maintaining a normal pregnancy. Therefore, targeting the increase of MDSCs in abnormal pregnancy conditions like pre-eclampsia may act as a prevention or therapeutic strategy. Finally, it is known that many dietary components can act as modulators of immune cells. Specifically, the polyphenol like phytochemical, curcumin has been shown to act as an anti-inflammatory agent with the potential to modulate multiple immune cells. Therefore, we propose two different studies to investigate the potential of curcumin as either an inhibitor and/or promotor of MDSCs in a disease-specific context. Together the role of phytochemicals as immunomodulators of MDSCs is still very young, in part due to the complexity of phytochemicals themselves, but the studies cited here provide evidence that the field is ripe for additional questions to be asked.
4

TRANSCRIPTIONAL CONTROL OF T HELPER CELL DIFFERENTIATION

Daniel Alejandro Canaria Gonzalez (15334258) 24 April 2023 (has links)
<p>  </p> <p>IL-9-producing CD4+ T helper (Th9) cells contribute to inflammatory responses during infection, anti-cancer responses and autoimmune disease. Thus, elucidating the signals that regulate their differentiation is critical for understanding the roles of Th9 cells in protective immunity and disease. Th9 cells differentiate in response to IL-4, TGF-β and IL-2, where IL-2 signaling through STAT5 is crucial for transactivating <em>Il9</em> locus. While the roles of IL-4 and TGF- β-mediated signaling are relatively well understood, how IL-2 signaling contributes to Th9 cell differentiation outside of directly inducing the <em>Il9</em> locus remains less clear. I found that human allergen-induced Th9 cells exhibited a strong signature of STAT5-mediated gene repression that was associated with inhibition of a Th17-like transcriptional signature. Likewise, blockade of IL-2/STAT5 signaling increased IL-17 and RORγt expression in murine Th9 cells <em>in vitro</em>. Interestingly, development of this Th17-like phenotype was independent of STAT3. While STAT3 was not required for IL-17 expression, it was required for their long-term persistence. These results suggest that IL-2/STAT5 signaling controls the balance between Th9 and Th17-like cell differentiation in vitro and during allergy. Additionally, I found that murine Th9 cells cultured in a low IL-2 environment had reduced IL-9 production and a diminished NF-kB-associated transcriptional signature, suggesting that IL-2 signaling is associated with NF-kB activation in Th9 cells. Interestingly, NF-kB activation via IL-1β stimulation enhanced Th9 differentiation under IL-2 limiting conditions and promoted their inflammatory potential in a mouse model of Lung inflammation. Mechanistically, we found that IL-2- limiting conditions enhanced IL-1β receptor expression and that IL-1β/NF-kB signaling increased the sensitivity to IL-2 and silenced the expression of the anti-Th9 transcription factor BCL6. Together, these findings indicate that IL-1β /NF-kB signaling can promote Th9 cell differentiation in IL-2-limiting conditions and that this pathway may be targeted to enhance Th9 differentiation and their inflammatory function.  Collectively, these data revealed two novel roles for the IL-2/STAT5 axis in Th9 cells.</p> <p>The Thymocyte associated High Mobility Group (HMG) box, known as TOX has been previously described to have paramount functions in the development of all the lineages of CD4+ T cells during thymic selection, during CD8+ T cell exhaustion and in Tfh cell differentiation and function. However, the role of TOX in non-Tfh CD4+ T cells in the periphery has not been addressed. In these studies, I found that CD4+ T cells express TOX in the steady state in secondary lymphoid organs like spleen, lymph nodes, and Peyer’s patches. Specifically, TOX was expressed remarkably in Tfh, Th1, Treg cells, and other non-Tfh unidentified Th cells, as well as Th2 cells in the lungs. Transcriptomics analyses using bulk RNA-seq revealed that TOX minimally alters s gene expression, however it revealed for the first time, that TOX induced genes associated with cell migration i.e., <em>Xcl1</em> <em>Ccl3</em>, <em>Ccl4</em> and also the inhibitory cytokine <em>Il10</em>. The induction of IL-10 and CCL3 was validated at the protein levels, and mechanistic studies revealed that the induction of these molecules required the transcription factor BATF, indicating for the first time a mechanism of TOX-mediated functions. Together, these data shed light in novel roles of TOX in CD4+ T cell function and opens the door for future functional and mechanistic studies that may be relevant during health and disease.</p>
5

MATHEMATICAL MODELING OF INTERLUEKIN-15 THERAPY FOR HUMAN IMMUNODEFICIENCY VIRUS

Jonathan William Cody (15321937) 19 April 2023 (has links)
<p>Interleukin-15 (IL-15) is a cytokine that promotes maintenance and activation of cytotoxic immune cells. Therapeutic IL-15 stimulates these cells to fight cancer and chronic infections, such as Human Immunodeficiency Virus (HIV). Animal models of HIV have demonstrated that IL-15 agonists can suppress the virus, but this was transient and was not observed in all cohorts. We developed a mechanistic mathematical model of IL-15 therapy of HIV to explain these differences in efficacy and to explore solutions. First, the model was applied to evaluate mitigating factors, including immune regulation, viral escape, and drug tolerance, using Akaike Information Criterion.  We found that immune regulatory mechanisms could explain the viral rebound observed with continued IL-15 therapy. Next, the model was expanded to allow it to simultaneously explain both the transient viral suppression noted above and the lack of viral suppression observed in another animal cohort.  In this cohort, the model suggested that higher pre-treatment viral load came with higher activation of immune cells and a balancing regulatory inhibition of cytotoxicity. Finally, we conducted stability analysis at a range of IL-15 therapeutic strengths. While there was an ideal IL-15 strength, monotherapy could not maintain viral levels below what would clinically be considered to be safely controlled. Stable viral control in the model required the combination of IL-15 with blockade of key regulatory pathways. Immune therapy of complex diseases will likely require combinations of medicines that boost the immune response at multiple key points. Mathematical models like this can expedite development of these treatments.</p>
6

<b>Agent-Based Modeling of </b><b>Cell Culture Granuloma Models: </b><b>The Role of Structure, Dimension, Collagen, and Matrix Metalloproteinases</b>

Alexa A Petrucciani (18422784) 22 April 2024 (has links)
<p dir="ltr">Tuberculosis (TB) remains a global public health crisis, causing over 10 million new infections and 1.3 million deaths in 2022 alone. TB is caused by <i>Mycobacterium tuberculosis </i>(<i>Mtb</i>), which initiates heterogeneous pathology in the lungs, including granulomas and cavities. Granulomas are organized structures of immune cells, traditionally thought to contain bacteria. Cavities are pathological spaces caused by the destruction of extracellular matrix (ECM), which can worsen disease outcomes and cause long-lasting pulmonary impairment.<i> In vitro </i>methods are commonly used to study host-pathogen interactions in <i>Mtb</i> infection, and recent developments have led to models that represent the TB granuloma environment more closely than traditional cell culture. These advances include the development of 3D models and the inclusion of physiological ECM components like collagen. Increasing complexity has been accomplished in a piece-wise manner – minimally necessary components are included to minimize cost while maintaining throughput and tractability. This creates a need for tools to analyze these systems and, more importantly, integrate the independent data created. We developed an agent-based model to characterize multiple <i>in vitro</i> models of TB and apply it to 1) separate the contributions of dimension and structure to bacterial control in granuloma-like spheroids and 2) explore how the interactions of collagen and matrix metalloproteinases (MMP) contribute to clinically relevant outputs such as bacterial load and ECM destruction. The model provides insights into the role of granuloma structure and the conflicting results of MMP inhibition, generating new hypotheses to be tested in tandem with <i>in vitro</i> models.</p>
7

<b>Agent-Based Modeling Of </b><b>Infectious Disease Dynamics: Insights into Tuberculosis, Pediatric HIV, and Tuberculosis-HIV Coinfection</b>

Alexis Lynn Hoerter (18424443) 23 April 2024 (has links)
<p dir="ltr">Tuberculosis (TB), caused by <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>), and human immunodeficiency virus-1 (HIV) are major public health concerns, individually and in combination. The status of the host immune system, previous <i>Mtb</i> infection and HIV-mediated T cell exhaustion, can have significant impacts on immune dynamics during reinfection. Individuals with asymptomatic latent TB infection (LTBI) may be protected against <i>Mtb </i>reinfection, as demonstrated by animal and <i>in vitro </i>studies. However, the underlying dynamics and protective mechanisms of LTBI are poorly understood. In HIV, long-term infection in children and associated T cell exhaustion leads to weakened immune responses to HIV reinfection. The complexity of these infections, particularly in the context of the heightened vulnerability of HIV+ individuals to TB, underscores the need for novel investigative approaches to study host-pathogen and pathogen-pathogen interactions. To this, we have developed an agent-based model (ABM) as a mechanistic computational tool to simulate the immune response to <i>Mtb </i>and HIV, separately and during coinfection. Our ABM integrates clinical and experimental data; simulates immune cell dynamics between macrophages, CD4+ and CD8+ T cells; and produces emergent granuloma-like structures – a critical response to <i>Mtb</i>. This <i>in silico</i> approach allows us to efficiently explore host-pathogen interactions and their clinical implications. By unraveling the complex interplay of immune cell activation, T cell exhaustion, and pathogen dynamics, our model offers insights that could guide the development of targeted therapies. By quantifying the multifaceted nature of these diseases and their interactions, we highlight the potential of computational approaches in understanding and treating complex diseases, individually and in combination.</p>
8

Identification and characterization of microRNAs which moderate neutrophil migration and acute inflammation

Alan Y Hsu (8912033) 09 September 2022 (has links)
<p>Neutrophils are the first cells recruited to an immune stimulus stemming from infection or sterile injuries via a mixture of chemoattractant cues. In addition to eliminating pathogens, neutrophils coordinate the overall inflammation by activating and producing inflammatory signals in the tissue while modulating the activation of other immune cells which in some cases leads to adverse tissue damage. Over amplified or chronic neutrophil recruitment directly leads to autoimmune diseases including rheumatic arthritis, diabetes, neurodegenerative diseases, and cancer. Dampening neutrophil recruitment is a strategy to intervene in neutrophil-orchestrated chronic inflammation. Despite intensive research over the past several decades, clinical studies targeting neutrophil migration have been largely unsuccessful, possibly due to the prominent redundancy of adhesion receptors and chemokines. Additional challenges lie in the balance of dampening detrimental inflammation while preserving immunity. Neutrophils are terminally differentiated cells that are hard to study in cell culture. Mouse models are often used to study hematopoiesis, migration, and chemotaxis of neutrophils but is very labor intensive. To discover novel therapeutic targets that modulate neutrophil migration, we performed a neutrophil-specific microRNA (miRNA) overexpression screen in zebrafish and identified eight miRNAs as potent suppressors of neutrophil migration. We have generated transgenic zebrafish lines that overexpresses these candidate miRNAs where we recapitulated the mitigation in neutrophil motility and chemotaxis to tissue injury or infection. Among those we further characterized two miRNAs which have not been reported to regulate neutrophil migration, namely miR-722 and miR-199.</p> <p> </p> <p>MiR-722 downregulates the transcript level of <i>rac2</i> through binding to the <i>rac2</i> 3'UTR. Furthermore, miR-722-overexpressing larvae display improved outcomes in both sterile and bacterial systemic models, which correlates with a robust upregulation of the anti-inflammatory cytokines in the whole larvae and isolated neutrophils. miR-722 protects zebrafish from lethal lipopolysaccharide challenge. In addition, overexpression of mir-722 reduced chemotaxis of human neutrophil like cells, indicating that miR-722 is a potential agent to reduce inflammation in humans. </p> <p>MiR-199<i>,</i> decreases neutrophil chemotaxis in zebrafish and human neutrophil-like cells. Intriguingly, in terminally differentiated neutrophils, miR-199 alters the cell cycle-related pathways and directly suppresses cyclin-dependent kinase 2 (<i>cdk2</i>), whose known activity is restricted to cell cycle progression and cell differentiation. Inhibiting Cdk2, but not DNA replication, disrupts cell polarity and chemotaxis of zebrafish neutrophils without inducing cell death. Human neutrophil-like cells deficient in CDK2 fail to polarize and display altered signaling downstream of the formyl peptide receptor. Chemotaxis of primary human neutrophils is also reduced upon CDK2 inhibition. Furthermore, miR-199 overexpression or CDK2 inhibition significantly improves the outcome of lethal systemic inflammation challenges in zebrafish. </p> <p> </p> <p>In summary, our results reveal previously unknown functions of these miRNAs, and provide potential avenues to modulate neutrophil migration as well as lead to discoveries of novel factors which can regulate this process. We have also discovered a non-classical role of CDK2 in regulating neutrophil migration which provides directions for alleviating systemic inflammation and a better understanding of neutrophil biology. </p>

Page generated in 0.0949 seconds