• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • Tagged with
  • 386
  • 386
  • 386
  • 94
  • 91
  • 89
  • 88
  • 81
  • 73
  • 71
  • 59
  • 58
  • 54
  • 48
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Role of Apolipoprotein A-1 in Defense Against Bacteria by Striped Bass (Morone saxatilis)

Johnston, L. Danielle 01 January 2006 (has links)
No description available.
42

CHARACTERIZATION OF THE HOST RESPONSE TO CLINICAL ISOLATES BELONGING TO THE STREPTOCOCCUS MILLERI GROUP

Kaiser, Julienne 10 1900 (has links)
<p>The <em>Streptococcus</em> Milleri Group (SMG) asymptomatically colonize the gastrointestinal, female urogenital, and upper respiratory tract in the healthy population, and are therefore traditionally considered commensals. The SMG, however, are also pathogens that cause pyogenic and pulmonary infections. The factors that differentiate pathogenic from non-pathogenic isolates have proven difficult to identify, and consequently the determinants of SMG pathogenicity remain unknown. Characterization of the immune response to the SMG is important towards advancing the understanding of SMG pathogenicity, however there are limited studies that have done so.</p> <p>Herein, we sought to investigate the cytokine profiles produced by human peripheral blood mononuclear cells in response to 35 clinical isolates of the SMG. Cytokine profiles varied across isolates resulting in a spectrum of responses that separated into three subgroups including a high, intermediate, and low response group. The responses were consistent across three individuals with the exception of several differences, which are discussed and warrant further studies on host susceptibility to SMG infections. The high and intermediate response groups were enriched with clinical isolates from invasive infections, which were found to induce significantly higher cytokine production than airway isolates. Cytokine induction was independent of TLR2 activation, suggesting that other pattern recognition receptors are involved in the recognition of and response to the SMG. Phenotypic characteristics, which are used in the clinical identification of the SMG, did not correlate with cytokine induction; therefore phenotypic tests are not sufficient to identify immunostimulatory isolates. The host response to the SMG characterized in this study provides foundational knowledge for future studies to investigate the mechanism of recognition as well as the function of downstream effector responses in the control of colonization and infection.</p> / Master of Science (MSc)
43

T-cell Dysfunction by HCV Core Protein Involves PD-1/PD-L1 Signaling.

King, Billy Ellis 05 May 2007 (has links) (PDF)
In 1989 the hepatitis C virus was identified as a significant cause of post-transfusion hepatitis. Nearly two decades later there is still no vaccine, inadequate treatment options, and limited understanding of how the virus establishes chronicity in the majority of the people it infects. Recent reports suggest that the interaction of a negative co-stimulatory pathway mediated by PD-1 and PDL-1 is associated with persistent viral infection. The role, if any, that PD-1/PDL-1 has in HCV infection is unknown. In this study we report that PD-1 is upregulated in T-cells from persons with chronic HCV infection when compared to healthy donors. In addition, PD-1 and PDL-1 are upregulated on T-cells from healthy donors when exposed to extracellular HCV core protein (a nucleocapsid protein that is immunosuppressive); upregulation of PD-1 is mediated by core's ability to bind to the complement receptor gC1q. We also report that the observed T-cell function can be restored by blocking the PD-1/PDL-1 interaction. Our results indicate that HCV core can upregulate an important negative T-cell signaling pathway that is associated with viral persistence. This upregulation of PD-1/PDL-1 represents a novel and perhaps shared mechanism that viral pathogens may use to subvert the human immune response. It also represents a potential new treatment option for the millions of people who suffer from chronic hepatitis C infection.
44

The Impact of Macrophage Polarity and the Tumor Microenvironment on NK Cell Phenotype and Function

Krneta, Tamara 10 1900 (has links)
<p>NK cells play a pivotal role in tumor rejection; however, once present in the tumor microenvironment, they are characterized by decreased cytotoxicity and reduced expression of activating receptors. The mechanisms governing the inactivation of NK cells within tumors remain poorly understood. Since tumor associated macrophages (TAMs) are a highly abundant and suppressive cell type within tumors, we hypothesized that they are capable of altering the function of NK cells. Following the co-culture of alternatively activated macrophages (M2) or TAMs with NK cells we observed that the expression of the cytotoxic marker CD27 on NK cells was down-regulated as well as the ability of these cells to kill YAC-1 cells in a killing assay. We have demonstrated that the mechanism by which M2 cells inhibit NK cells is TGF-β dependent. Notably, the developmental stage of NK cells after interaction with TAMs was altered and the NK cells became phenoytpically mature and potentially exhausted (CD27<sup>low</sup>CD11b<sup>high</sup>). This prompted our interest in examining the developmental stage of NK cells from polyoma MT antigen (pyMT) transgenic mouse (MMTV-pMT) breast tumors. Interestingly, in contrast to the <em>in vitro</em> results, we have shown that NK cells isolated from pyMT tumors are developmentally immature; however maintain their maturity within the spleen. Their immature phenotype correlates well with their decreased expression of perforin, granzyme, and NKp46. Both our <em>in vitro</em> studies with TAMs and our <em>in vivo</em> developmental studies using the pyMT model demonstrate that NK cells are altered by their surroundings. A better understanding of how NK cells are modified by the tumor microenvironment will help to develop strategies aimed at bolstering immune responses against tumors.</p> / Master of Science (MSc)
45

Lung Immunopathology Following Influenza And Pneumococcus Infection: Mechanisms Of Disease And Therapeutic Approaches

Damjanovic, Daniela 04 1900 (has links)
<p>Influenza is a highly contagious respiratory disease. Yearly epidemics and pandemics account for high morbidity and mortality worldwide. Lung immunopathology is a major factor causing death following influenza. In addition, secondary bacterial superinfections that occur after influenza further complicate the lung immunopathology and contribute to higher morbidity and mortality. The research presented in this thesis addressed important, understudied questions in the complicated field of tissue immunopathogenesis and host defense to influenza and pneumococcal infections. Firstly, in a model of acute respiratory influenza infection, we found that the classically proinflammatory cytokine TNF plays a dual and biphasic role at different times post-infection. While it does have pro-immune roles in the beginning stages, TNF acts as a negative type 1 immune regulator at later points of infection. TNF controls the level of immune activation and has a key role in preventing lung immunopathology and aberrant tissue remodeling. Secondly, to further investigate mechanisms of lung pathology, we elucidated the role of bacterial replication and over activated host immune responses during bacterial superinfection following influenza. In our model of pulmonary <em>Streptococcus pneumoniae</em> infection after influenza, we found that dual infected animals experience rapid weight loss and succumb to infection. Bacterial outgrowth, dysregulated cytokine and chemokine expression, and severe lung neutrophilia and immunopathology are linked to the poor clinical outcome. Combined treatment with both an antibiotic azithromycin and corticosteroid dexamethasone best improves clinical outcome, bacterial clearance, cellular and cytokine responses, and immunopathology. Thirdly, in our continuing interest for improved therapies during pulmonary infections, we tested the transgenic expression of type I IFN as a treatment during <em>S. pneumoniae</em> infection. We found that IFN-a controls bacterial outgrowth and improves clinical outcome. Together, our findings provide novel insights into the mechanisms of lung immunopathology and treatment protocols for pulmonary influenza and pneumococcal infections.</p> / Doctor of Philosophy (Medical Science)
46

The Innate Anti-HIV-1 Activity of Human Seminal Plasma

Martellini-Moore, Julie A 01 January 2011 (has links)
Human immunodeficiency virus (HIV) has become a global pandemic over the past few decades, with new infections and related deaths in the millions each year. There is no cure in sight for HIV-1 infection, and there has been little progress in developing an efficacious vaccine. Heterosexual transmission of HIV-1 remains the principal mode of transmission throughout the world and thus measures, such as topical vaginal microbicides, to prevent infection of the female reproductive tract are actively being explored. Recent trials of topical vaginal microbicides have shown that their interaction with the mucosal surfaces of the female reproductive tract as well as semen can hinder microbicide effectiveness against HIV-1 infection. Therefore, understanding the role these fluids play in HIV transmission would be critical towards developing effective antiviral prophylaxes. A recent study from our group demonstrated that human cervicovaginal secretions contained numerous cationic antimicrobial peptides and proteins, which collectively inhibited HIV-1 infection of target cells and tissues. To ascertain if human seminal plasma (SP), the main vector responsible for transmitting HIV-1, exhibited antiviral activity we utilized several antiHIV assays in the presence or absence of minimally manipulated SP. The majority of the intrinsic anti-HIV-1 activity of SP resided in the cationic polypeptide fraction. Antiviral assays utilizing luciferase reporter cells and lymphocytic cells revealed the ability of whole SP to prevent HIV-1 infection, even when SP was diluted 3200-fold. Subsequent fractionation by continuous flow acid-urea (AU)-PAGE and antiviral testing revealed that cationic polypeptides within SP were responsible for the majority of anti-HIV-1 activity. A proteomic approach was utilized to resolve and identify 52 individual cationic polypeptides that contribute to the aggregate anti-HIV-1 activity of SP. One peptide fragment of semenogelin I, termed SG-1, was purified from SP by a multi-step chromatographic approach, protein sequenced, and determined to exhibit anti-HIV-1 activity against HIV-1. Anti-HIV-1 activity was transient, as whole SP incubated for prolonged time intervals exhibited a proportional decrease in anti-HIV-1 activity that was directly attributed to the degradation of semenogelin I peptides. Collectively, these results indicate that the cationic polypeptide fraction of SP is active against HIV-1, and that semenogelin-derived peptides contribute to the intrinsic anti-HIV-1 activity of SP. Conversely, naturally occurring peptidic fragments from the SP-derived prostatic acid phosphatase (PAP) have been reported to form amyloid fibrils called "SEVI" capable of enhancing HIV-1 infection in vitro. In order to understand the biological consequence of this proviral effect, we extended these studies in the presence of human SP. PAP-derived peptides were agitated to form SEVI and incubated in the presence or absence of SP. While PAP-derived peptides and SEVI alone were proviral, the presence of 1% SP ablated their proviral activity in several different anti-HIV-1 assays. The anti-HIV-1 activity of SP was concentration dependent and was reduced following filtration. Supraphysiological concentrations of PAP peptides and SEVI incubated with diluted SP were degraded within hours, with SP exhibiting proteolytic activity at dilutions as high as 1:200. Sub-physiological concentrations of two prominent proteases of SP, prostate-specific antigen (PSA) and matriptase, could degrade physiological and supraphysiological concentrations of PAP peptides and SEVI. While human SP is a complex biological fluid, containing both antiviral and proviral factors, our results suggest that PAP peptides and SEVI may be subject to naturally occurring proteolytic components capable of reducing their proviral activity. Our studies demonstrate the overall antiviral activity of human SP, but there is still a critical need for effective topical vaginal microbicides that can prevent HIV-1 transmission. The synthetic human retrocyclins are cyclic antimicrobial peptides that are remarkably active against HIV-1, and are being developed as topical vaginal microbicides. Herein, we assessed whether the putative proviral SEVI was able to adversely affect the anti-HIV-1 activity of the retrocyclin analog RC-101. While SEVI alone enhanced viral infection, this effect was completely negated in the presence of RC-101. Retrocyclins such as RC-101 are inhibitors of HIV-1 entry, by preventing gp41-mediated viral fusion. Interestingly, using an HIV-1 reverse transcriptase (RT) specific assay, we also determined that RC-101 directly inhibited the activity of RT in a dose dependent manner, suggesting a secondary mechanism of viral inhibition. Our group has determined that RC-101 induces only a modest level of resistance in HIV, which may be due in part to RC-101's dual mechanisms of viral inhibition.
47

An Investigation of Epigenetic Contributions to Inter-animal and Age Dependent Variation in the Bovine Innate Immune Response.

Green, Benjamin 01 January 2014 (has links)
Mastitis represents a major issue within the dairy industry responsible for economic loss via decreased animal productivity and associated veterinary costs. Currently, there is a push to identify a phenotypic innate immune response that will yield dairy cows with an enhanced resistance to mastitis. Bovine dermal fibroblasts were used as a cell model to measure the response of individuals to Gram-negative bacterial stimuli through the TLR4 signaling pathway. Fibroblast cultures were isolated from 15 dairy heifers at 5, 11, and 16 months of age in order to determine the variability in responsiveness to LPS as well as to monitor the development of the innate immune response in calves. These individuals displayed a large range in response to LPS as measured by IL-8 production. In addition, response within individuals increased dramatically with age. To determine the cause behind this, DNA methylation was investigated as a potential player in the variation in response described both within an individual over time as well as across individuals. Fibroblast exposure to 5-aza-2'-deoxycytidine, a DNA demethylating agent, increased the cellular response to LPS, but more so in cultures that had previously displayed low responding phenotypes. This suggested that DNA methylation acted as an inhibitor of the innate immune response, and may be responsible for some degree of the variation seen in the LPS response. To determine the effect of epigenetic factors on this response, microarray analysis was conducted on RNA isolated from cells either having been epigenetically modified (DNA demethylation and histone hyperacetylation) or without undergoing any epigenetic treatment. This analysis identified 1,758 genes with altered expression due to epigenetic modification. To focus on DNA methylation's role, methylated CpG island recovery assay (MIRA-Seq) libraries were created from fibroblasts to investigate differential methylation from a group of the same individuals sampled at 5 and 16 months of age. In addition, transcriptomic data were generated by RNA-Seq from fibroblasts collected from the young and older samples and exposed to LPS for 0, 2, and 8 hours to characterize age-associated changes in the innate immune response. Cultures from older animals were much more responsive to LPS as indicated by greater expression of IL-8, IL-6, TNF-α, and CCL20 at various times in response to LPS. TLR4 and CD14 were more highly expressed in older cultures, suggesting these fibroblasts are more able to detect the presence of LPS. Analysis of the bovine fibroblast methylome revealed methylation with remarkable stability except for 20 regions along the genome undergoing major shifts due to age. Similar data were collected from fibroblasts isolated from different individuals displaying either a low or high responding phenotype resulting in 843 regions with differential methylation between groups. This suggests that DNA methylation may be playing a role in both the age-dependent and between animal differential responses to LPS, and also gives the first in depth look at the bovine fibroblast methylome and its stability over time.
48

Redox Control Of Allergic Airway Disease: Impact Of Glutaredoxin-1 On Epithelial Driven Inflammation And Allergen-Induced Airway Remodeling

Nolin, James D. 01 January 2015 (has links)
Asthma is a multi-faceted chronic inflammatory disease accompanied by loss of airway epithelial integrity leading to remodeling of the airways. Perturbations to the lung redox environment, including alterations in glutathione (GSH) content, have been reported in asthma. GSH can be conjugated to protein cysteines, controlling protein function in an oxidant-dependent process known as protein S-glutathionylation (PSSG). The thioltransferase, glutaredoxin-1 (Glrx1), deglutathionylates proteins under physiological conditions, restoring sulfhydryl groups of target proteins. Glrx1 is emerging as a critical player in settings of allergic airway disease, but its function in regulating epithelial cell responses to asthma-relevant cytokines has not been examined. Furthermore, the role of Glrx1 in controlling the extent of airway remodeling in response to house dust mite (HDM) in vivo is still not well understood. Interleukin-17A (IL-17A) is a potent cytokine that stimulates epithelial cells to produce pro-inflammatory mediators, in part by activating the nuclear factor kappaB (NF-κB) pathway, a key regulator of inflammation. We demonstrate that interleukin-17A (IL-17A) induces rapid activation of both classical and alternative NF-κB, while simultaneously resulting in protein oxidation and PSSG. In particular, we show IL 17A induces S-glutathionylation of RelA (RelA-SSG) and IKKα (IKKα-SSG), which is enhanced following siRNA-mediated knockdown of Glrx1. We also demonstrate that absence of Glrx1 leads to increased nuclear content of RelA and RelB and enhanced production of NF-κB-driven pro-inflammatory genes, KC and CCL20 while decreasing IL-6 expression. Finally, we show that siRNA-mediated knockdown of IKKα attenuates nuclear RelA and RelB and dampens pro-inflammatory gene production. Together, these data indicate a crucial role for the Glrx1/PSSG axis in controlling RelA-SSG, IKKα-SSG and epithelial cell responsiveness to IL-17A. Mice lacking Glrx1 were previously shown to display enhanced resolution of allergic airway disease induced by ovalbumin (Ova) challenge. In this study, we determined the role of Glrx1 in a HDM model of allergic airway disease. Wild type (WT) mice and Glrx1 deficient (Glrx1-/-) mice demonstrated similar total lung cell counts, but Glrx1-/- mice displayed fewer neutrophils than WT mice. Conversely, mice overexpressing Glrx1 specifically in CCSP positive cells in the lung (Epi-Glrx1) showed attenuated total lung cell counts and lung eosinophils compared to control mice. Immunohistological analysis of remodeling markers revealed that Glrx1-/- mice displayed increased HDM-induced mucus metaplasia, α smooth muscle actin (αSMA) positivity and collagen staining compared to WT mice. Evaluation of total lung collagen showed that Glrx1-/- mice had significantly higher collagen content compared to WT mice. In Epi-Glrx1 mice, attenuation of mucus metaplasia, αSMA content and collagen staining was observed compared to control mice. Furthermore, Epi-Glrx1 mice also demonstrated significantly impaired collagen production compared to control mice. We also demonstrate that Glrx1 absence results in decreased expression of the epithelial cell marker, E-cadherin, and increased expression of αSMA, a mesenchymal marker. Together, these studies demonstrate a critical role for Glrx1 in controlling epithelial cell responses to IL-17A and in mediating in vivo collagen production in response to chronic allergen exposure.
49

IDENTIFICATION OF PEPTIDASES IN HIGHLY-PATHOGENIC VERSUS WEAKLY-PATHOGENIC NAEGLERIA FOWLERI AMEBAE

Vyas, Ishan 01 January 2014 (has links)
Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly-pathogenic mouse-passaged amebae (Mp) and weakly-pathogenic axenically-grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium from Mp and Ax amebae were the presence of an activity band of approximately 58kDa and 100 kDa bands susceptible to the action of cysteine and metallopeptidase inhibitors, respectively. Further roles of the peptidases during the invasion process were examined by in vitro invasion assays in the presence of inhibitors and Cysteine and metallopeptidase inhibitors were found to greatly reduce invasion through the ECM. This study establishes a functional linkage of the expressed peptidases to the invasion process, and these peptidases may serve as a candidate target for therapeutic management of N. fowleri infection.
50

THE EFFECT OF DEXAMETHASONE ON IL-33-MEDIATED MAST CELL ACTIVATION

Chernushevich, Oksana I 01 January 2015 (has links)
Dexamethasone has been shown to inhibit IgE-mediated mast cell activation, and the present research investigated its role in suppressing IL-33-mediated mast cell activation. We have found that micromolar concentrations of Dexamethasone are capable of suppressing IL-33-mediated mast cell cytokine production, on several genetic backgrounds, and in not only bone marrow derived mast cells, but also peritoneal mast cells. Intracellular staining demonstrated that Dexamethasone significantly reduces expression of the IL-33 receptor, T1/ST2, in mast cells; however, the cytokine suppression is independent of T1/ST2 downregulation. At the same time, Dexamethasone pretreatment significantly reduced ERK phosphorylation, but our data suggests that inhibition occurs even prior to ERK blockade. Finally, Dexamethasone treatment in vivo reduced IL-33-mediated cytokine production and neutrophil infiltration in the murine peritoneum. Thus, Dexamethasone, a well-established therapy for inflammatory disease, can suppress IL-33-mediated mast cell activation, and may therefore be effective for treating diseases now being attributed to IL-33 effects.

Page generated in 0.1239 seconds